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ARTICLE INFO ABSTRACT

Keywords: Wildfire behaviour is influenced by weather, fuel, and topography. Detailed physics-based sim-
Wind downscaling ulations are computationally expensive, particularly if accounting for fire—wind interactions. To
Fire-induced wind address this, simplified models are developed that disregard certain physical laws and are often
Fire dynamics simulator (FDS) decoupled from the atmosphere. Additionally, efforts to improve model reliability by feeding
Physics-constrained Neural Networks near-surface wind fields into the model using statistical and dynamical downscaling methods
Fluid flow reconstruction have two drawbacks: disregarding fire—wind interaction, and high computational demand of

dynamical methods. This study proposes combining UAV-swarm-based wind and temperature
measurements with convolutional neural networks to estimate the near-surface fire-induced wind
field, aiming to capture the fire—wind interaction and its effect on fire propagation dynamics in
grassland fires without solving Navier-Stokes equations. The two-step process includes (i) super-
resolution reconstruction of high-altitude wind field from sparse UAV-based measurements, and
(ii) high-resolution mapping of high-altitude to near-surface wind fields. The latter may be
fed into decoupled wildfire models to replicate the effect of fire—wind interactions. Synthetic
data is generated via LES simulations of grassland fires with different wind speeds, terrain
slopes, vegetation types, and heights. The model performance is evaluated across different UAV
swarm sizes, spatial UAV distributions, and wind measurement errors. Results suggest that
the developed framework accurately estimates the near-surface wind field, even with a limited
number of UAVs, achieving average MAE and RMSE values of 0.849 and 1.323 for U, 0.672
and 1.022 for V, and 0.551 and 1.01 for W velocity components. Model uncertainty increases
with smaller swarm sizes and higher measurement noise.

1. Introduction

In recent years, the frequency, scale, and severity of wildfires have increased globally as a result of the impacts of
climate change [1, 2], urging the need for a comprehensive understanding of wildfire dynamics and their interaction
with the atmosphere. Fire-atmosphere interaction refers to the complex interactions between a fire and the surrounding
atmospheric environment, encompassing the interaction between the burning fuels and atmosphere, the energy and
mass fluxes between dead and living vegetation, as well as the interaction between the atmosphere and the combustion
process as long as the resultant perturbations are larger than the normal ambient variability [3, 4]. A critical aspect of
fire-atmosphere interaction considers the effect of wind on the fire dynamics, as understanding this effect is central to
comprehensively capturing the feedback mechanisms between fire and atmosphere.

1.1. Fire-wind interaction

During the past century, numerous studies have highlighted the influence of the ambient and ground-level wind
on fire growth dynamics. Gisborne [5] noted that the wind contributes to fire propagation through four mechanisms:
(i) enhancing moisture exchange between vegetation and atmosphere, (ii) increasing the rate of spread of fire, (iii)
carrying ignited embers to unburnt areas, and (iv) supplying oxygen flux into the flaming front. By tilting the flame,
the ambient wind also reduces the distance between the flame and the fuel bed and enhances radiative and convective
heat transfer to the unburnt vegetation [3, 6].
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1.2 Wind downscaling 1 INTRODUCTION

Wildfires, in turn, alter their surrounding environment by releasing a considerable amount of heat, which induces
buoyant updrafts, as well as lateral indrafts [7] and horizontal vortices surrounding the plume[4]. Hence, a precise
identification of the turbulent structure and momentum fluxes surrounding the fire is important, as they cause spatial and
temporal changes in fire spread [8]. Even low-intensity fires may produce atmospheric turbulence that affects the fire
front dynamics (i.e. see [9]). Consequently, a considerable number of studies have focused on characterising turbulence
in the vicinity of fires through large-scale experiments such as the International Crown Fire Modelling Experiment
(ICFME) [10], field-scale experiments (i.e. see [11]), and small-scale experiments such as [12]. Additionally, some
studies, such as [13, 14, 15] have further attempted to provide a detailed description of the coupled fire atmosphere
interaction utilising numerical simulations.

Given the multi-scale nature of wildfires, the physics and dynamics of the models highly depend on the desired
temporal and spatial scales, implying distinct sets of equations for various scales [16]. A group of models, often
called fully-coupled models, such as FIRETEC [17] and WFDS [18], solve the complete set of fluid dynamics and
thermochemical equations to capture the dynamics of a wildfire by accounting for changes in moisture, temperature,
wind speed, and direction. Though such a detailed solution provides detailed insights into extreme events in wildfires,
its applicability in operational fire management tasks is limited due to high computational costs [16].

To address the need for decision support tools capable of providing fast and large-scale estimations, a series of
faster-than-real-time (FTRT) models such as FARSITE [19], BEHAVE [20], and FireProM-F [21, 22] are developed.
These models are partially or fully decoupled from the wind to limit the computation demands. Yet as a result, these
models’ uncertainty level increases significantly for longer estimation intervals [16]. To mitigate the uncertainty, a
series of studies have focused on utilising data assimilation techniques [23], or incorporating numerical weather
prediction (NWP) models into fire propagation models [24]. Nonetheless, their suitability is questionable as large-scale
models may not capture the impact of smaller-scale fires. The large-scale outputs from NWP models, however, should
be downscaled to better reflect the fine-scale dynamics in complex terrains before being input into fire models.

1.2. Wind downscaling

Downscaling refers to the process of obtaining fine-scale quantities from lower-resolution data using appropriate
refinement methods [25]. Traditionally, wildland fire decision support systems utilise large-scale meteorological
forecasts to generate a domain-average wind field for fire propagation forecasting [26]. Still, small-scale wind dynamics
play a major role in fire behaviour. Consequently, several studies have focused on generating more refined wind maps
to enhance the accuracy of wildfire modelling. Forthofer et al. [26, 27] compared the effect of three techniques for
generating fine-scale surface winds from NWP models on fire propagation estimations. These methods include(i) a
uniform wind field over the train, (ii) utilising 2D mass-conserving models [28, 29], and (iii) utilising Mass and
momentum-conserving numerical models for wind field downscaling. Their results indicated that high-resolution wind
input increases the accuracy of fire propagation estimations, with accuracy increasing alongside the complexity of the
model.

Downscaling methods can be classified into (i) dynamical and (ii) empirical-statistical approaches [30]. Dynamical
downscaling employs high-resolution mass-conserving or momentum-conserving models to interpret the outputs of
NWP models on a finer scale. This method, however, is computationally expensive and time-consuming, so it is
typically restricted to small domains [25]. In contrast, statistical approaches train statistical models on pair quantities
at coarse and fine scales, to enable instant or real-time estimations due to the minimal inference times of statistical
models.

Recent advancements in machine learning (ML) and deep learning (DL) methods facilitated the use of the state-
of-the-art algorithms for wind downscaling studies [see 31, 32]. In particular, Convolutional Neural networks (CNN)
and single image super-resolution (SR) methods [see 33, 34] have proven to be effective due to their capabilities in
learning multidimensional mappings. They are particularly useful when spatially distributed data and the generation
of high-resolution data from low-resolution inputs are of interest [25].

This super-resolution procedure is generally referred to as flow field reconstruction within the context of flow
mechanics literature. An example would be to interpret a low-resolution fluid flow image (data matrix) as a collection
of sparse sensor measurements. Utilising such an approach, super-resolution analysis could be extended to address the
inverse problem of reconstructing global fields from local observations [35]. Different studies have utilised various
deep-learning models for flow field reconstruction purposes. Examples include convolutional neural networks mostly
with UNet structures (i.e. see [36, 37]), artificial neural networks with autoencoder architectures [38], and physics-
informed frameworks [31, 39].
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1.3 Uncertainty estimation for flow field reconstruction 1 INTRODUCTION

While deep learning and machine learning models are frequently used for various types of inference and decision-
making procedures, assessing the effectiveness and reliability of these Al systems before deploying and utilising them
is crucial.

1.3. Uncertainty estimation for flow field reconstruction

Uncertainty quantification (UQ) forms the basis of many important decisions, and predictions without UQ are
typically unreliable [40]. UQ methods could be categorised into (i) Bayesian methods and (ii) ensemble methods
[40]. Bayesian methods encompass techniques such as the Markov chain Monte-Carlo (MCMC) algorithm, variational
inference methods (VI), Monte-Carlo dropout (MCD), etc [40]. While principled, methods like Bayesian neural
networks, MCMC, and the ensemble of models are computationally expensive and hence impractical for large
datasets and applications [40, 41]. As a result, approximation techniques such as MCD [42] and Monte-Carlo batch
normalisation (MCBN) [43], which could be used to estimate the epistemic uncertainty of a single trained model,
have gained traction. MCD leverages dropout during inference to generate an ensemble of outputs from a single
model, effectively sampling from a predictive distribution and estimating its mean and variance [42, 41]. MCBN is
another technique that could be used to approximate the Bayesian inference in neural networks [43]. In this approach,
many mini-batches are created by selecting random samples to go along with a particular query during inference. The
predictive distribution is then estimated using the mean and variance of the ensemble of outputs [41].

While high-resolution wind data significantly enhances fire spread modelling accuracy, acquiring such data
efficiently is challenging or virtually infeasible. However, recent advancements in unmanned aerial vehicles technology
offer promising localised and real-time data collection capabilities, which would help overcome these scale and
resolution limitations in the dynamic environment of wildfire.

1.4. Drones in wildfire management activities

Recent advancements in UAV technology offer valuable capabilities to the fire community, including real-time fire
detection, monitoring, and fighting assistance [see 44]. They are typically equipped with sensors such as the Global
Navigation Satellite System (GNSS), Inertial Navigation System (INS), and at least one imagery sensor [45] and offer
mobility in three dimensions, which makes them flexible and cost-effective instruments for providing spatiotemporal
measurements, such as the atmospheric wind [46]. As aresult, an increased number of studies have focused on the use of
UAV:s for wind field measurement tasks over other conventional alternatives such as wind LiDARs, balloons, and wind
measurement towers (e.g., [see 47, 48]). Both fixed-wing and rotary-wing UAVs could be used for atmospheric wind
measurements, with fixed-wing UAVs more suited to measurement tasks that cover large areas and rotary-wing UAVs
mostly suitable for measurements that need hovering on a spot for long periods, such as validating wind measurements
and in the proximity of the structures [46]. Wind measurements could be performed using external wind sensors or
onboard avionic systems [49]. The idea of coordinated wind measurement with multiple UAV's was first proposed by
[50], and later implemented in the field by [49], which utilised a group of quadrotors hovering for a long period at
certain locations, to provide spatiotemporal wind measurements.

1.5. Contribution

Reviewing the literature, it could be inferred that recent efforts to reduce uncertainty in operational wildfire models
have focused on incorporating the high-resolution near-surface wind field in them, utilising various dynamical and
statistical methods. Although effective to some extent, two limitations remain unaddressed.

e Dynamic downscaling, though faster than executing a fully coupled simulation, requires significant processing
capacity, especially for large territories.

e Both downscaling methods rely on the outputs of NWP models or synoptic measurements and often fail to
capture the enhancing effect of fire on the surrounding atmosphere, particularly for smaller-scale fires.

To address these issues, [51] proposed a methodology based on combining real-time UAV-swarm-based wind
measurements above the fire with deep neural networks to reconstruct the high-resolution near-surface wind field.
This method estimates near-surface wind fields from sparse UAV-based measurements at higher altitudes and offers
the ability to improve the predictions of the wildfire model by inputting estimated wind fields to the wildfire model.
Hence, it effectively mimics the fire—wind interaction without incurring the hefty cost of solving the Navier-Stokes
equations [51]. This paper builds on that concept, focusing on the detailed development of the wind reconstruction
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2 SYSTEM DESCRIPTION

pipeline, including details on synthetic data generation, model architecture design, evaluation, as well as the uncertainty
quantification procedure.

The remainder of this paper is organised as follows: Section 2 provides an overview of the introduced framework and
its building blocks; Section 3 presents details on model development, simulation configurations, dataset preparation,
and Al models architecture and training procedures; Section 4 provides the results of the model training, including
model performance metrics, and uncertainty evaluations for high altitude wind field reconstruction (Section 4.1) and
near-surface wind field estimation (Section 4.2), respectively; Sections 5 shortly discussses practical capabilities and
limitations of the system; and finally Section 6 provides a summary of the research findings and derived conclusions.

2. System description

This paper presents a data-driven system for downscaling wind patterns in the vicinity of grassland fires to improve
the accuracy and reduce the uncertainty of fire spread predictions, utilising real-time measurements from a swarm of
UAVs. A schematic of the system is presented in Figure 1. Given that the fire plume typically tilts forward due to
the ambient wind velocity, the turbulent fields near the surface and at the measurement height differ significantly.
Therefore, downscaling atmospheric turbulence in the presence of fire cannot be directly addressed through a single-
image super-resolution similar to typical downscaling studies. To address this, the proposed system consists of three
key steps:

e Real-time UAV-swarm-based measurement of the turbulent wind above the fire;
e Reconstruction of high-resolution wind field at UAV flight altitude from sparse measurements;
o Estimation of high-resolution near-surface wind field from the reconstructed wind at UAV altitude

It is important to note that while the downscaling often refers solely to super-resolution or reconstruction step in
the literature, this study considers downscaling to encompass both the super-resolution/reconstruction step and the
estimation of the high-resolution near-surface wind field from the reconstructed high-altitude wind field. A schematic
description of the proposed methodology is presented in Figure 2.

-13 0 +13V -velocity

_— -

Figure 1: Schematic view of the fire propagation and distribution of the transverse component of velocity (V) at 2m AGL
and 40m AGL along with the UAV swarm .

The first component of the system is the UAV swarm, responsible for the measurement of wind and temperature at
the determined flight height (Z,,—assumed to be equal to 40 m above ground level (AGL). The swarm is also responsible
for monitoring the location and temperature of the fire front. Depending on the type of UAYV, a variety of sensors such
as pitot tubes and multi-hole pressure probes, mechanical and sonic anemometers, or LIDAR systems could be used.
While these sensors mounted on quadrotors are reported to introduce measurement errors of up to 50% [52], adequate
sampling strategies such as the Nyquist sampling theorem should be fulfilled to mitigate aliasing problems and capture
the signal effectively. This is, however, more problematic when using fixed-wind UAVs, which normally fly at higher
speeds (e.g. see [53]).

The downscaling process is then addressed through a two-stage convolutional neural network pipeline. The first
utilises the sparsely measured wind values at each time step as input to generate a high-resolution map of the wind field
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Modelling

Data-Driven ANN Mapping
X X \

High-Altitude Wind Field . | High-Altitude Wind Field Near-Surface Wind Field |
Measurement E Generation Mapping ]

Figure 2: Schematic description of the proposed methodology adopted and modified from [51]

Table 1
Overview of the simulated Geometric and physical properties of the vegetation, terrain, and wind
Veg model Veg height (m) Terrain Slope (degrees) U,, (m/s) N. simulations
Veg, 0.2,05, 10  -40%(-21.8) , -20%(-11.31) , 0 (0), +20%(-11.31), +40%(-21.8) 4, 6, 8, 10, 12 75
Veg, 0.2,05, 10  -40%(-21.8) , -20%(-11.31) , 0 (0), +20%(-11.31), +40%(-21.8) 4, 6, 8, 10, 12 75

at the measurement altitude (Z,,=40 m). The second model then estimates the near-surface wind field (Z,=2 m AGL)
through an image-to-image translation model. This separation was found effective in allowing the model to capture the
dynamics of fire-induced turbulent field while keeping the model size and architecture efficient.

3. Materials and Methods

Training deep learning models requires an extensive amount of data, while actual measurements of wind velocity
in wildfire situations are challenging. Hence, this study generates synthetic training data through performing 150
three-dimensional computational fluid dynamics (CFD) simulations of wildland fire propagation in different scenarios.
All simulations are performed utilising the Fire Dynamics Simulator (FDS), a solver of the Navier-Stokes equations
appropriate for low-speed, thermally-driven flows developed by the National Institute of Standards and Technology
(NIST)[54].

3.1. Simulation setup

An overview of the physical and geometrical parameters of the simulation conditions, including wind velocity,
vegetation height and type, and terrain slope, is presented in Table 1. Each vegetation type is used in 75 simulations
combining three vegetation heights (H,), five terrain slopes (5), and five different ambient wind speeds (u ().

The fuel is represented utilising the Lagrangian Particle Model (LPM) in FDS, which represents the fuel as a group
of Lagrangian particles heated by convection-radiation heat transfer [54]. The specific physical and thermal parameters
of fuels utilised in this study are presented in Table 2.

The ambient wind is introduced into the model utilising the Monin-Obukhov similarity theory, for which the wind
speed (u,) and potential temperature change with height as follows:

u(z):% [ln (f) -y, (%)] ()

o

6* Z Z
0z) =0+ - [ln <Z—> —‘Ph(z)] 2)
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Table 2

Summary of fuel physical properties and thermal decomposition coefficients
Property Unit Veg, (Veg,) Reference
Area to Volume Ratio (o) m-! 9,770 [55]
Bulk density (p,) kg.m™3 1.313 [55]
Fuel - Cellulose [15]
Fuel Density (p) kg.m~3 512 [15]
Moisture content (M) % 6.3 [55]
Specific Heat kJ kg™t K! 2.1 [56]
Conductivity kJ kg=! K-! 0.1 [15]
Heat of Evaporation (Hy,) kJ kgt 2259 [57]
Heat of Combustion (H,) kJ kg 17,400 [54]
Heat of Pyrolysis (H,,,) kJ kg™! 418 [57]
A, 5! 1040 (24550)  [58] ([59])
E,, Jmol! 61041 (58200) [58] ([59])
Char Yield (v, kg kg! 0.25 (0.23) [54]
Aghar kg.m2.s7! 465 [60]
Eopy J.mol! 68000 [60]
Ash Yield (v,,) kg kg™! 0.04 [54]
Obukhov Length (L) m =500 [15]
Roughness Length(z,) m 0.03 [15]
Drag Coefficient (c,) - 2.8 [54]
Soil Specific Heat k) kg=! K-! 2.0 [15]
Soil Conductivity W m-t K-! 0.25 [15]
Soil Density kg m~3 1,300 [15]
Relative Humidity % 40 [15]

Where u,, is the friction velocity, k is the von Karman constant equal to 0.41, z, is the aerodynamic roughness
length, 6, the scaling potential temperature, 6, ground level temperature, L is the Obukhov length, and ¥}, and ¥,,
represent similarity functions. An unstable stratified condition is assumed to represent the conditions of a warm summer
day aligned with the experimental conditions of the reference experiment.

The turbulent flow field is modelled utilising the very large eddy simulation (VLES) model with Deardorff’s sub-
grid scale (SGS) model for turbulent eddy viscosity closure terms. To replicate the natural turbulence of the atmospheric
boundary layer, the synthetic eddy method (SEM)[61] with an arbitrary value of 10% turbulence intensity is used to
introduce random eddies into the domain, following prior studies (i.e. see [62, 63]). Boundary Conditions include a
no-slip boundary condition for the ground surface and *Open’ boundary conditions for the rest of the boundaries.

3.2. Grid sensitivity and model validation

Simulations are validated against field-scale experiments carried out by the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) during July and August 1986. The reference experiment here is the C064
experiment, carried out in a 100100 m field covered with Kerosene grass. Experimental conditions include wind
speed u,=4.6 m/s, temperature T=32°C, and H,=0.21 m, resulting in a rate of spread (RoS) of 1.2 m/s [55]. The fire
was ignited by two field workers walking in opposite directions from the centre of the upwind boundary, modelled here
as a strip of burnable grass with a specified RoS along the strip.

Grid sensitivity is studied by tracking the firefront location generated by different grid sizes over time under
simulation conditions comparable to the actual experiment. As presented in Figure 3a, three different grid sizes of
1 x 1 x 1 m3 (coarse), 0.5 x 0.5 x 0.5 m> (fine), and 0.25 X 0.25 X 0.25 m? (very fine) were tested. Additionally, the
effect of turbulence model on fire front location and heat release ratio (HRR) was studied, comparing the estimations
from Simple Very Large Eddy Simulation (SVLES), Very Large Eddy Simulation (VLES), and Large Eddy Simulation
(LES) models as depicted in Figure 3b and 3c for front location and HRR, respectively. Finally, Figure 3d compares
the simulated wind speed with the measured data during the experiment. Though replicating the exact wind variations
is inherently challenging, a general agreement could be observed between the simulation and the measured values.
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Figure 3: Model sensitivity and validation analysis

Even though the estimations of the fire-front location using a 0.5 m grid align with the experimental data, it may
not be fine enough to adequately resolve a high fraction of the turbulent kinetic energy to ensure a valid Large Eddy
Simulation. Consequently, a posteriori grid quality analysis is conducted, which includes studying the effect of grid size
on turbulence characteristics by calculating the spectral density of turbulence and the measure of turbulence resolution
M (x) metric. The power spectral density (PSD) is useful in characterising kinetic energy distribution across different
frequencies or scales of turbulent motion. Figure 4 presents the effect of grid size on the estimated spectral density (4a)
and wind velocity (u,) time series (4b) measured 9 meters downstream of a 10 MW/m pool fire with a width of 1 m.
Data were sampled at 10 Hz for 260 seconds. The measurement point is located within the fire plume, so it reflects
the fire-induced wind velocities. Results indicate that the simulated wind time series and the power spectral density
distribution estimated using 0.5 and 0.25 m grid are comparable, suggesting that the 0.5 m grid can be sufficient. It
should be highlighted that while the observed fire intensities in our experiments span a wide range, the 10 MW fire is
chosen to represent an average intensity from across simulation scenarios. The measure of turbulence resolution could
be calculated as follows [54]:

k
M(x) = k& 3)
ses + TKE

where TKE is the turbulent kinetic energy and could be calculated as follows:

TKE = = (@ —u)* + @ - 0)* + (W — w)?) )

N —
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Figure 4: Effect of grid size and Fire Intensity on Spectral Density of turbulence
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Figure 5: Effect of grid size on the measure of turbulence resolution M (x) downstream of a 10 MW fire

and K, is the subgrid kinetic energy and is estimated from Deardorff’s eddy viscosity model. It is also suggested that
a valid Large Eddy Simulation is obtained such that M (x)<0.2 [54].

Figure 5 presents the effect of grid size on the turbulence resolution M (x) at different downstream locations of the
10 MW fire. Even though the 0.25 m grid size resolves 90-95% of TKE at most locations, the 0.5 m grid also resolves
approximately 80-85% of turbulent kinetic energy except very close to the surface. This indicates that the 0.5 m grid
is fine enough for a valid large eddy simulation to capture dominant turbulent structures in our models.

Consequently, the combination of 0.5 m grid size and the VLES turbulence model outputs satisfactory results at
reasonable computing cost and hence is utilised for the main simulations. It is, acknowledged that the results are grid
sensitive to a certain level and a full grid convergence has not been achieved, yet, practical considerations, including the
large span of the vegetated area, as well as the need for a considerable height of domain, and large number of simulation
scenarios prevent the utilisation of finer grids. The simulation domain is a rectangular block of 600x320x60 m in x,
y and z directions, respectively. A burnable area of 200200 m is defined to provide sufficient space for the formation
of a quasi-steady fire propagation, especially for upslope and high wind conditions. To optimise the computational
cost, the domain is discretised utilising a non-uniform grid with 0.5 x 0.5 x 0.5 m> cells for the vegetated area and its
adjacent areas (+4 m) up to 44 m high, moderate cells of 1 x 1 x 1 m? for upstream and downstream areas (+30 m),
and coarse cells of 2 x 2 x 1 m? for the rest of the domain. The defined setup results in a total number of ~16.7 million
cells, parallelised on 32 CPU cores for the duration of the simulation.
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3.3. Model architecture and training procedure

This study aims to estimate the spatial distribution of near-surface wind velocity (u,, v,, w,) in the presence of an
active grassland fire from the sparsely measured values collected by a UAV swarm at 40 m AGL (uy, v40 and wyy).

As depicted in Figure 6, the problem is addressed through supervised training of two consecutive CNNs. The first
one reconstructs the high-resolution wind and temperature field at 40 m AGL from the sparse or low-resolution input
data or measurements. Samples from the high-resolution CFD simulation are used as proxies for UAV measurements.
Three swarm sizes (n) are considered, with n € {25,49, 100}. Sampled pixels P € R"™* are then used to generate the
low-resolution input matrix I, = Fiyerp, knn(P) € R13X13%4 by applying linear interpolation to areas that fall between
at least two measurements and assigning the nearest available value (i.e. the nearest neighbour) to outer regions (see
Figures 6a and 6b). Additional features including the terrain slope (s), the surface temperature (Ty,,), vegetation
type (Gy), and vegetation height (H,) are inputted to the model through a dedicated encoder branch concatenated with
the corresponding layers of the Super Resolution (SR) model (see Figures 6¢ and 6d). Hence, the output of the SR
model is a high-resolution reconstruction of the wind and temperature field at 40 m AGL:

Iy = F(Ii, Lierrain) 5)

where I, = (U, Uag> Wag> Tag) € RHOHNX and [\ = (T, s, H,, G).

The second CNN is trained to map the reconstructed wind and temperature field to near-surface wind fields. Its input
matrix includes a concatenation of reconstructed wind and temperature data at 40 m AGL with surface temperature,
vegetation height and type, and terrain slope:

C = concat(I;, Igyyy) € R4S (6)
while its output is the wind field at 2 m AGL (see Figures 6d and 6e.):
I =G(C), where I .= (up, Uy, w5) @)

The structure for both networks is based on a UNet architecture with residual blocks [64] and includes Convolutional
Block Attention Module (CBAM) [65] blocks in both encoder and decoder branches. A sensitivity analysis was
conducted to find the optimal number of model parameters, balancing accuracy and training time. Each convolutional
layer includes a tanh() activation function, except for the output layer, which uses the linear activation function. It
should be noted that the linear activation showed better performance than the Leaky ReLLU during initial experiments.
Architectural details include zero padding across all convolutional layers, 4.—normal kernel initialiser, a kernel size of
3 % 3 for layers, except for the initial convolutional layer (7 X 7 kernel) and for the output layer (1 X 1 kernel). Figure 6
also shows the structure of the encoder and decoder blocks in both models. All blocks include a dropout layer with a
dropout ratio of 5% to enhance the model’s generalisation and support uncertainty quantification analysis. All models
were developed in Python (v3.11) using the TensorFlow library (v2.15) for deep learning model and training. Each
model was trained for 200 epochs using the MAE loss function and the Adam optimiser with a batch size of ten, an
initial learning rate of 0.0006, and an exponential decay rate of §; = 0.9. Training was performed on an NVIDIA RTX
3080 GPU. Accuracy metrics were monitored after each epoch during the training, and the best models were saved for
later use. To evaluate the performance of the neural networks, the mean over N samplings (inference cycles) of the
mean absolute error (MAE) and the root mean squared error (RMSE) are calculated as

N n
MAE(y,y) = % D % <Z lvi — yﬁl) ®)
k=1 i=1

—

N n
RMSE(y.y) = — | ¥ %(Z (y,-—y,f)Z) ©)

k=1 i=1

where y is the ground truth, y’ is the estimated value, n is the number of data points per sample (swarm size), and N
is the number of samplings (inference cycles).
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Figure 6: Architecture for reconstructing the high-resolution wind field from low-resolution sensor data, where: (a) high-
altitude wind field sampled by UAVs in a structured formation, (b) generated low-resolution wind field used as input to the
SR model, (c) terrain and fire data provided as auxiliary inputs, (d) reconstructed high-altitude wind field, and (e) estimated
near-surface wind field.

To assess the model’s probabilistic performance, three additional metrics are employed: the standard deviation
(std), the Prediction Interval Coverage Probability (PICP), and the Prediction Interval Normalised Average Width
(PINAW). The standard deviation is a measure of variation or dispersion in a set of data, and can be calculated as

std = (10)

where x, is the MAE or RMSE of the k" sampling. The PICP evaluates how well a model’s Prediction Intervals (PIs)
capture the true values. It measures the proportion of true values that actually fall inside their PIs [66]:

N
1
PICP = — Y e (11)

k=1
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Table 3
Effect of the number of model parameters on the SR performance for n=100, utilising first sampling strategy
* * * * °
model  N.params U* (m/s) V¥ (m/s) W= (m/s) ¢
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
1 1,030,358 0.744 1.277 0.724 1.241 0.875 1.535 3.860 14.891
Attention 2 3,001,084 0735 1268 0.717 1.225 0.867 1.514 3.841 14.632
3 15,334,136 0.736 1.274 0.720 1.234 0.864 1510 3.797 14.626
No-Attention 4 3,001,084 0.741 1.283 0.719 1.230 0.869 1.523 3.857 14.814
Att+physics 5 3,001,084 0737 1275 0.721 1.235 0.868 1.516 3.845 14.683
* U(m/s) € [-18.7, 55.3], V (m/s)e [-38.4, 37.7], W (m/s)e [-22.2, 52.1]
&= { 0 otherwise (12

where L; and U, are the estimated bounds of the kg, PI. The PI Width (PIW) quantifies how uncertain the model is
about its prediction for a given input. A larger PICP means that more targets (data points) fall within the PIs, which
does not necessarily mean that the model is accurate. The PINAW measures the average PIW normalised by the range
of actual observations [66]:

N
U,-L
PINAW = — ' 26~k (13)
N k=1 Ymax - Ymin
where Y, and Y ;. are the maximum and minimum values of the actual observations, respectively. Thus, for a given

PICP, a smaller PINAW usually implies a better model.

1200
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(a) Structured grid sampling (b) Random sampling (c) Temperature-weighted sampling

Figure 7: Domain sampling strategies for low-res input generation

3.4. Dataset

As described before, a total of 150 simulations are conducted with different wind speeds, terrain slopes and
vegetation heights and types. The wind and temperature field at 40m and 2m AGL— parallel to the terrain—are extracted
at different time steps after the ignition and compiled into a dataset for model training. The dataset hence includes
24568 pairs of input-target data, of which 17343 pairs are randomly selected for training, 3652 for validation, and
3573 for the test.

As mentioned earlier (Section 3.3), the low-resolution input data I}, € R!3¥13%4 ysed for training super resolution
model are generated from the corresponding high-resolution images through sampling a prescribed number of pixels
(25,49,100) and then creating a continuous response surface by performing linear interpolation between measured
pixels and assigning nearest neighbour value to outer regions.
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To study the effect of sampling distribution on the model performance, three different sampling strategies are
examined as depicted in Figure 7:

1. Strategy I (Structured Grid Sampling): as shown in Figure 7a, assumes that UAVs are positioned on uniformly
spaced locations to provide a regular grid of sampled pixels for the whole duration of the simulation.

2. Strategy II (Random Sampling): as shown in Figure 7b, is a purely random sampling of the 416x416 flow field,
mimicking mobile UAVs performing uncoordinated measurements or operations.

3. Strategy 11l (Temperature-Weighted Sampling): as shown in Figure 7c, is a particular case of random sampling
when the sampling probabilities are biased towards higher temperature regions, mimicking scenarios when UAV
swarm has concentrated on the fire front. In this scenario, the probability of a pixel being sampled is defined as
follows:

0.7
P(x, y) = M (14)

where T'(x, y) is the temperature at pixel (x, y) and P(x,y) defines the probability of that pixel being sampled. It

should be highlighted that the value of 0.7 is selected arbitrarily to balance points sampling over the fire line and
across the rest of the domain.

For the first strategy, only one low-resolution image is generated per each high-resolution field, which preserves the
17343, 3652, 3573 split for training, validation and test. In contrast, the second and third strategies produce a different
low-resolution field for each sampling iteration, leading to infinitely many possible low-resolution configurations at
any specific time. Therefore, a sensitivity analysis is conducted to examine how the number of low-resolution samples
per high-resolution field affects the model’s generalisability and accuracy. This is, however, discussed in more detail
in the next section.

4. Results and Discussion

The proposed models aim to learn the highly complex behaviour and relationship between the measurement-
altitude and near-surface wind fields, which is inherently challenging, due to the dynamic and nonlinear nature of
the fire—atmosphere interaction. The wind fields are inherently different at measurement height (Z,,=40 m AGL) and
the estimation heights (Z,=2 m AGL). Near-surface wind velocities peak immediately downstream of the flaming
front, while the maximum velocities at (Z,,) are observed at a significant distance downstream of the fire location.
Additionally, the velocity field near the terrain surface features two counter-rotating wake vortices downstream of the
flaming front, increasing the complexity of the flow field.

The models developed in this study are designed to be time-independent, in the sense that they do not use past states
of the wind field. Meanwhile, the primary objective is real-time estimation of the near-surface wind field from sparse
instantaneous measurements carried out by the UAV swarm. To maintain clarity, this section is divided into two parts.
The first part discusses the experiments regarding the evaluation of the super-resolution model for high-altitude wind
field reconstruction, and the second part presents the results of the second model trained to estimate the high-resolution
near-surface wind field.

4.1. High altitude flow field reconstruction
This section details the accuracy and uncertainty quantification of the models trained for high-altitude wind field
reconstruction.

4.1.1. Sensitivity analysis

A comprehensive sensitivity analysis was conducted to evaluate the effect of architectural and training configura-
tions on the accuracy of the super-resolution model. The number of filters in each layer (and consequently the number
of trainable parameters) is the first parameter investigated. As presented in Table 3, increasing the number of trainable
parameters from 1M to 4M improved the model performance. However, further increasing the model size has resulted
in a decline in the model’s accuracy, most likely due to overfitting or vanishing gradients. Comparing Model 2 and
Model 4 highlights the impact of incorporating the Convolutional Block Attention Module (CBAM) blocks, which
have improved the accuracy of the model outputs. To integrate physical constraints into the model training process, a
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4.1 High altitude flow field reconstruction 4 RESULTS AND DISCUSSION

Table 4
Effect of the number of UAVs on the SR performance utilising first sampling strategy
N UAV U* (m/s) V* (m/s) W* (m/s) T* C
' MAE RMSE MAE RMSE MAE RMSE MAE RMSE
25 (5*5) 0.767 1341 0.745 1285 0.896 1.589 4.295 16.278
49 (7*7) 0.755 1.315 0.735 1.265 0.882 1.558 4.091 15.613
100 (10*10) 0.735 1.268 0.717 1.225 0.867 1.514 3.841 14.632
*U(m/s) € [[18.7, 55.3], V (m/s)E [-38.4, 37.7], W (m/s)e [-22.2, 52.1]
Table 5

Effect of increasing the number of randomly sampled low-resolution inputs per high-resolution field on the accuracy of the
super-resolution (SR) model. The second strategy with n=100 UAVs is used in all cases.

N. input U* (m/s) V* (m/s) W* (m/s) T* C

samples MAE RMSE MAE RMSE MAE RMSE MAE RMSE
2 0.752 1313 0.726 1.248 0.880 1.558 4.131 15.669
3 0.748 1306 0.722 1.243 0877 1549 4082 15.614
5 0.732 1274 0.717 1236  0.868 1539  3.995 15.557

*U(m/s) € [[18.7, 55.3], V (m/s)€ [-38.4, 37.7], W (m/s)€ [-22.2, 52.1]

physics-constrained version of the model is implemented by incorporating the incompressible version of the continuity
equation into the loss functions as follows:

Lossy = LoSSiegiqual + 1V - V1

Where Loss,, is the final loss utilised to train the model. However, despite increasing the complexity and training
time, utilising this constraint did not enhance model performance as indicated in table 3. Based on this analysis, the
second model architecture with 4M trainable parameters is adopted as the optimal architecture for the subsequent
examinations.

The second part examines the effect of the number of UAVs (sampling points) on the accuracy of the super-
resolution model. As previously mentioned, three different sizes of the UAV swarm with 25, 49, and 100 UAVs were
tested for generating low-resolution inputs utilising the first sampling strategy. Three distinct models were hence trained
and tested. Table 4 presents the corresponding accuracy metrics for these models. It is indicated that increasing the
number of UAVs—as expected— results in improvement in wind field reconstruction accuracy. Though it should be
highlighted that the observed performance improvement is relatively small, with the difference between MAE values
remaining within 4% for velocity components and 10% for temperature, despite changing swarm size from 25 to 100,
a 4x increase.

The final examination investigates how training models with various low-resolution representations of a single
high-resolution flow field affects model performance. Accordingly, three different models were trained utilising 2, 3
and 5 low-resolution input representations per high-resolution wind field as presented in Table 5. Considering that
each low-resolution sample should be treated as a distinct input along with its corresponding high-resolution target,
it effectively multiplies the dataset size and consequently, the training time. Obtained results indicated that while
increasing the number of low-resolution inputs slightly increases model performance and generalisability, it comes at
the cost of a proportional increase in training time. This would hence make it impractical to account for a high number
of inputs for training on the full dataset.

4.1.2. Performance evaluation

The primary model is trained so as to ensure accurate super-resolution estimations regardless of the sampling
strategy or swarm size and distribution. Hence, the training dataset consists of low-resolution and high-resolution pairs
generated using all three sampling strategies and varying swarm sizes. Considering 1 low-resolution representation
per high-resolution field for the first sampling strategy and 3 for the second and third sampling strategies, the training
dataset would include 18 X 17325 input-output pairs of data, excluding the case with the third sampling strategy and
n=49 out for testing the model. This model was trained for 100 epochs due to the substantial computational cost and
the observed lack of improvement after 40 epochs.
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4.1 High altitude flow field reconstruction 4 RESULTS AND DISCUSSION

Table 6
Performance evaluation metrics and their standard deviation for the SR model trained on the full dataset
N. UAV U (m/s) V (m/s) W (m/s) T
(strategy) ~ MAE (std) RMSE (std) MAE (std) RMSE (std) MAE (std) RMSE (std) MAE (std) RMSE (std)
25 (1) 0.755 1315 0.731 1.261 0.883 1.562 4158 15.084
49 (1) 0.752 1.308 0.730 1.259 0.881 1.555 4111 15.787
100 (1) 0.748 1.301 0.729 1.257 0.878 1.546 4.052 15.570
25 (2) 0.762 1.325 0.732 1.263 0.884 1.565 4.189 16.060
49 (2) 0.756 1.314 0.731 1.261 0.882 1.559 4.145 15.915
100 (2) 0.752 1.307 0.730 1.259 0.880 1.552 4.097 15.729
25 (3) 0.759 1.321 0.732 1.264 0.884 1.566 4.189 16.122
100 (3) 0.755 1.315 0.732 1.263 0.883 1.563 4.164 16.045

Overall  0.755 (0.0101) 1.313 (0.0177) 0.731 (0.088) 1.261 (0.0153) 0.882 (0.0108) 1.558 (0.0198) 4.138 (0.0736) 15.901 (0.2618)
*U(m/s) € [-18.7, 55.3], V (m/s)e [-38.4, 37.7], W (m/s)e [-22.2, 52.1]

The model accuracy is evaluated utilising the MAE and RMSE, while the uncertainty of estimations is quantified
utilising Std of these metrics. For each testing subset, the model undergoes 15 inference cycles with randomly selected
low-resolution batches to accompany each sample. Table 6 presents the average performance metrics along with the
overall standard deviation of these metrics, evaluated against the testing sets of the low-resolution datasets used to train
the model, and then averaged. It should, however, be highlighted that a fixed test set is used per scenario across all
inference cycles to solely focus on the model uncertainty and the data uncertainty does not affect the evaluations.

Overall, the model achieved an MAE and RMSE of 0.755, 1.313 (m/s), respectively, for the U, 0.731 and 1.261 for
the V', and 0.882 and 1.558 for the W component of velocity. For the temperature (T'), these values were equal to 4.138
and 15.901. Comparing these values to their value ranges, it could be concluded that the model achieves acceptable
accuracy across all predicted variables. Furthermore, the standard deviation of all metrics remains within 1.5% of their
respective averages, indicating a low uncertainty of model estimations within the training range of data.

Concerning the influence of the sampling strategy on the model performance, while the first strategy yields slightly
lower MAE and RMSE values, the differences across all three strategies were negligible, suggesting a proper model
generalisation. In addition, increasing the number of UAVs from 25 to 100 also proved to have a negligible effect on
the model accuracy improvement.

Figure 8 presents a visual comparison between the target and mean predictions of the SR model for the case with
uyg =4m/s, H,=0.2 m, and horizontal terrain (5=0 %). The low-resolution samples were generated assuming a swarm
size of n=100 UAVs, utilising the third sampling strategy (100(3)). The columns of the figure present the ground truth
(first column), the model’s mean predictions (second column), and the error values (third column). The final column
compares interpolated input, ground truth, and predicted values along the domain’s centerline. Each row corresponds
to one parameter including U (Figure 8a), V' (Figure 8b), and W (Figure 8c) components of velocity, and temperature
(T) (Figure 8d).

It could be observed that while the model prediction is a smoothed version of the true field, the model captures the
general pattern of the wind field within the fire plume and the surrounding area and provides an accurate estimation of
the upstream wind field, which is a significant improvement over simple interpolation. The narrow uncertainty bounds
further validate the model’s reliability in this context.

4.1.3. Uncertainty quantification

The uncertainty of estimations could arise from both model limitations (epistemic) and data variability (aleatoric).
While these uncertainty sources could be separately evaluated, such isolation provides limited added value in
operational contexts. This section hence evaluates model behaviour under realistic operational variability, including
variations in the spatial distribution of UAVs and sensor-level measurement noise, which together reflect real-world
deployment scenarios.

Wind measurement using UAVs is inherently noisy, leading to high levels of uncertainty. Additionally, the number
of UAVs in real-world scenarios is often lower than that in controlled simulations. Therefore, the trained model
is evaluated against unseen swarm sizes, varying spatial distributions, and different input noise levels. Each high-
resolution wind field within the test set is randomly sampled multiple times—with different random seeds from training
cycles— to generate several Low-resolution representations of the same high-resolution wind field, replicating the
infinitely possible spatial distribution of UAVs over the domain. These versions are then used to make multiple
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Figure 8: Results of the high-resolution wind and temperature field reconstruction for case 100(3) ujy =4 m/s, H, =02 m
and S = 0%, depicting the high-resolution ground truth/target, mean prediction of the model, the reconstruction error,
and comparison of the reconstructed value at the centre line of the field with model estimation and the model input.

estimations of the same high-resolution field, capturing the combined effect of model uncertainty and sampling
variability.

Table 7 presents the accuracy and uncertainty metrics across unseen cases of swarm size and sampling representa-
tions. The first investigation quantifies the effect of decreasing the swarm size from 49 to 16 and then to 9, utilising third
sampling strategies. It is indicated that despite the model was not trained on data from 49(3), it provides comparably
accurate estimations (i.e., MAE = 0.755 and an RMSE = 1.314 for U) as those seen during the training. Further
reducing the swarm size to 16 and then 9 leads to a slight increase of MAE of U from 0.755 to 0.762 and then to 0.777,
respectively, corresponding to a 3% increase, indicating the model’s resilience to lower-resolution inputs. The model
uncertainty is then quantified in terms of Prediction Interval Coverage Probability (PICP), and the Prediction Interval
Normalised Average Width (PINAW), due to the minimal variations of the MAE and RMSE standard deviations across
different cases, making it difficult to identify trends or draw conclusions. The PICP for the U component increases from
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Table 7
Evaluation of performance metrics and uncertainty of the SR model against unseen UAV numbers

N. UAVs (sampling strategy)
293) 163 93 9@ 90

MAE 0.755 0.762 0.777 0.786  0.767
U RMSE 1314 1327 1347 1359  1.333
PICP 0107 0123 0.142 0144 0.134

PINAW (%) 0.485 0.568 0.688 0.719  0.661
MAE 0.732 0733 0734 0734 0.733

v RMSE 1.262 1265 1.266 1266  1.265
PICP 0.057 0.059 0061 0.063  0.060
PINAW(%) 0.168 0176 0184 0.192  0.182

MAE 0.884 0.885 0.887 0.887  0.886

W RMSE 1564 1569 1572 1571 1570
PICP 0.058 0060 0063 0.065 0.064
PINAW(%) 0.250 0.257 0.269 0.283  0.265

MAE 4168 4207 4247 4.261  4.222

T RMSE 16.052 16.185 16.274 16.211 16.198
PICP 0188 0194 0202 0200 0.191

PINAW(%) 0.185 0.194 0.211 0.230 0.212

Table 8
Evaluation of performance metrics and uncertainty of the SR model against different measurement noise

N. UAVs (sampling strategy)

9(2) 25(3) 49(3)

noise level no noise 10% 30% 50% 50% no noise 10% 30% 50%

MAE 0.786 0.936 1.513 2.038 1.736 0.755 0.790 1.143 1.579

U RMSE 1.359 1.530 2.138 2.730 2.369 1.314 1.358 1.743 2.190
PICP 0.144 0.259 0.494 0.512 0.451 0.107 0.168 0.394 0.430
PINAW/(%) 0.719 1.462 3.765 5.121 4.006 0.485 0.865 2.533 3.516
MAE 0.734 0.736 0.750 0.766 0.757 0.732 0.733 0.738 0.750

v RMSE 1.266 1.270 1.293 1.321 1.304 1.262 1.264 1.273 1.280
PICP 0.063 0.073 0.110 0.132 0.112 0.057 0.062 0.088 0.103
PINAW/(%) 0.192 0.228 0.363 0.456 0.378 0.168 0.187 0.271 0.336
MAE 0.887 0.890 0.911 0.935 0.921 0.884 0.884 0.894 0.912

W RMSE 1.571 1.579 1.628 1.676 1.650 1.564 1.566 1.588 1.628
PICP 0.065 0.075 0.111 0.134 0.115 0.058 0.064 0.091 0.107
PINAW(%) 0.283 0.335 0.524 0.656  0.553 0.251 0.278  0.404 0.501
MAE 4.261 4.501 5.263 5.937 5.523 4.168 4.233 4.714 5.292
T RMSE 16.211 16.381 17.016 17.624 17.274 16.052 16.094 16.418 16.913
PICP 0.200 0.266 0.431 0.440 0.376 0.188 0.207 0.356 0.351

PINAW(%) 0.230 0.327 0.621 0.818 0.666 0.185 0.242 0.444 0.595

0.107 to 0.142 while decreasing the swarm size from case 49 to 9, while PINAW increases from 0.485% to 0.688%,
equivalent to 42% increase. This suggests that improved PICP coverage in cases with smaller UAV numbers primarily
corresponds to the expanded width of Pls, reflecting better PICP coverage of values at the cost of higher uncertainty of
the model. This trend is more pronounced in the U and T parameters. For T', the MAE increases from 4.168 to 4.247
(=1.9%) while PINAW increases by ~14%. However, for V and W components, MAE and RMSE values exhibit small
changes of ~0.2% while PINAW rises less than ~8%.

Comparing different sampling strategies with the same swarm size of n=9, it is indicated that while performance
variations are minimal across different sampling strategies (MAE for U ranges from 0.767 to 0.786), the PICP and
PINAW vary up to 9%, with the second sampling strategy exhibiting both higher accuracy and higher uncertainty.
In summary, the model maintains a satisfactory performance under a reduced number of UAVs to 9, with a
marginal accuracy degradation; however, the model’s uncertainty increases as a result. More importantly, the model
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demonstrates robustness against sampling strategies, indicating that the system can function without the need for a
dedicated subset of UAVSs to remain stationary for persistent wind measurement. This highlights the system’s flexibility
for deployment in dynamic UAV operations.
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Figure 9: Results of the high-altitude reconstruction of the U-component for case 49(3), u;, = 4 m/s, H, = 0.2 m and
S = 0% under different measurement noise levels, depicting the high-resolution ground truth/target, mean prediction of
the model, the reconstruction error, and comparison of the reconstructed value at the centre line of the field with model
estimation and the model input.

Table 8§ presents the performance and uncertainty metrics under different input noise levels of 10%, 30% and 50%,
for different swarm sizes of n from 9 to 49, utilising the third sampling strategy. The model performance is evaluated
using multiple low-resolution representations subjected to random Gaussian noise. This approach effectively simulates
a realistic scenario subject to sensor, environmental and swarm distribution uncertainties. The input Gaussian noise
(N) is defined proportional to the standard deviation of each component and each input batch, which results in the
noisy input data in the form of Uy, = N X U + U. The noisy data is then used to generate low-resolution input
images.
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Table 9
performance evaluation metrics and uncertainty of the NSR model against different testing subsets
U (m/s) V (m/s) W (m/s)

UAV number (strategy) MAE (std) RMSE (std) MAE (std) RMSE (std) MAE (std) RMSE (std)
25 (1) 0.862 1.337 0.679 1.142 0.552 1.011
49 (1) 0.859 1.335 0.677 1.14 0.551 1.01
100 (1) 0.857 1.331 0.676 1.138 0.551 1.01
25 (2) 0.867 1.345 0.679 1.142 0.552 1.01
49 (2) 0.862 1.337 0.678 1.141 0.552 1.01
100 (2) 0.859 1.334 0.677 1.139 0.551 1.01
25 (3) 0.867 1.344 0.68 1.144 0.552 1.011
100 (3) 0.864 1.341 0.679 1.142 0.551 1.01
Overall 0.849 (0.040) 1.323 (0.046) 0.672 (0.017) 1.022 (0.023) 0.551 (0.002) 1.010 (0.002)

*U(m/s) € [-26.1, 41 3], V (m/s)€ [-33.1, 27.35], W (m/s)€ [-25.6, 29.95]

The obtained results indicate that generally, increasing the noise level reduces the model accuracy and increases
predictive uncertainty. For instance, with a swarm made of 9 UAVs, introducing only 10% measurement noise raises
the MAE for U from 0.786 to 0.936 (~19%), and RMSE from 1.359 to 1.530 (~12%), while PINAW increases from
0.719% to 1.462% and PICP from 0.144 to 0.259. For temperature, MAE increases moderately (~6%), and PINAW
rises from 0.230% to 0.327%. This is, however, less significant in ¥ and W components with MAE rising from 0.192 to
0.228% for the V, and from 0.283 to 0.335% for W, and from 0.230 to 0.327% for temperature (T). Increasing the noise
ratio to 50%, the MAE increases from 0.786 to 2.038 (~160%), and PINAW from 0.719% to 5.121% of the data range
for U. For temperature, the MAE rises by #40% and PINAW from 0.23% to 0.818%, all relatively low compared with
the data ranges. Additionally, it is found that increasing the swarm size improves the model accuracy and reduces the
model uncertainty, particularly under high measurement noise conditions—an interesting finding. For example, under
50% noise condition, increasing the swarm size from 9 to 25 leads to a reduction of the MAE and PINAW values for
U from 2.038 to 1.736 and from 5.121 to 4.006, respectively. This corresponds to a 15% and 22% reduction in MAE
and PINAW values, respectively.

Figure 9 presents a graphical representation of the super-resolution reconstruction of the velocity and temperature
components, under different measurement noise levels in a case with 49 UAVs, utilising the third sampling strategy. It is
indicated that the spatial accuracy of reconstruction reduces, and the PIs widen as the input noise increases. Notably, by
increasing the input noise level, the average estimations of the velocity tend to overestimate the wind velocity at regions
behind the fire plume for u;; <6 m/s and underestimation for u;, > 6, and a smoother and more uniform estimation of
the wind field ahead of the fire, suggesting convergence towards a mean flow field. However, the model consistently
underpredicts temperature values within the plume across varying noise levels (see Figure 12). Additionally, Values
behind the fire plume remain largely stable, and prediction variations remain within +0.5 °C.

4.2. Near surface wind field reconstruction

This section presents the performance and uncertainty quantifications of the model trained to reconstruct or estimate
the near-surface wind field Iy,; = (5, 0, w,) € RUO*HEX3 from a concatenation of reconstructed high altitude wind
field—from previous section— with the high-resolution data corresponding to the surface temperature, vegetation height
and type, and the terrain slope C = concat(I,,, Iigrain) € R*O416X8_ The model is referred to as NSR from here on,
short for the near-surface reconstruction model.

The training configurations, including the model architecture, number of trainable parameters, activation functions,
and kernel sizes, of the NSR are kept similar to the SR model in the previous section. The training dataset is formed by
pairing the reconstructed outputs of the SR model as the input and the high-resolution near-surface wind field as the
target. Considering that the uncertain estimations of the first model are used to generate uncertain near-surface wind
field estimations in the second model, the NSR model indirectly inherits and propagates this uncertainty, resulting in
a cumulative uncertainty effect across the two-stage framework.

To balance probabilistic performance requirements with training costs, 3 different high-resolution representations
of the high-altitude wind field are generated by the SR model and used as input to train the NSR model, forming a data
set with 24 X 17325 input-output pairs of data, leaving the case with third sampling strategy and n=49 out for testing
the model.
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Figure 10: Results of the high-resolution near-surface wind field reconstruction for case 49(3), and environmental conditions
of uy=4m/s, H =02 m and S = 0%.

4.2.1. Performance evaluation

Similar to the previous section, the effect of embedding the attention mechanism in the model on the estimation
accuracy is studied. The fully convolutional baseline exhibited a promising performance with MAE=0.785 and RMSE
=1.255 for U, MAE=0.656 and RMSE =1.123 for V, and MAE=0.555 and RMSE =1.021 for W component of velocity,
which are, however, up to 5.5% higher than corresponding values achieved by the attention-based model presented in
Table 9. It is also worth mentioning that the fully convolutional model tend to provide a smoother representation of the
wind field compared to the attention-based model. Consequently, the attention mechanism is embedded into the final
model.

Table 9 presents the average performance metrics of the NSR model testing subsets of the reconstructed wind fields
used to train the model. Similar to the section 4.1.2, the model has undergone multiple inference cycles for each testing
subset with randomly sampled batches to accompany each sample.

Overall, the model achieved MAE and RMSE values of 0.849 and 1.323 for U, 0.672 and 1.142 for V', and 0.551
and 1.01 for the W component of velocity, respectively. Additionally, the standard deviation of all metrics is bound in
arange of 5% of their means, indicating relatively high confidence in model estimations and low epistemic uncertainty.
Besides, the overall impact of the high-altitude sampling strategy proved to be negligible, as indicated by the minor
variation in MAE and RMSE metrics across different scenarios. Also, increasing the number of UAVs within the
swarm from 25 to 100 exhibited a negligible effect of less than 1% on the average accuracy of the model across
different sampling scenarios, thus it could be considered negligible.

Figure 10 presents a visual representation of the the NSR model estimations for the case with u; = 4, m/s,
H, = 0.2,m, and flat terrain (S = 0%), at the same time instance of the previous figures. The near-surface

g
wind is estimated utilising the reconstructed high-altitude wind field from the scenario with 49 UAVs utilising the
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Table 10
Evaluation of performance metrics and uncertainty of the NSR model against unseen Swarm sizes

N. UAVs ( sampling strategy)
29(3) 1603 93 9@ 90

MAE 0.861 0.873 0.880 0.884 0.873

U (m/s) RMSE 1.337 1.352 1.362 1.367 1.353
PICP 0.0597 0.0653 0.0708 0.0725  0.0689

PINAW (%) 0.6410 0.7210 0.7960 0.8270 0.783

MAE 0.679 0.681 0.685 0.683 0.682

V (m/s) RMSE 1.142 1.146 1.151 1.149 1.146
PICP 0.075 0.078 0.080 0.081  0.07920
PINAW (%) 0.449 0.472 0.489 0.502  0.48300

MAE 0.552 0.552 0.553 0.552 0.552

W(m/s) RMSE 1.011 1.011 1.012 1.011 1.011
PICP 0.047 0.048 0.049 0.049 0.049

PINAW (%) 0.2710 0.2770 0.2830 0.2860 0.2830

Table 11
Evaluation of performance metrics and uncertainty of the NSR model against different measurement noise

N. UAVs ( sampling strategy)

9(2) 25(3) 49(3)

Noise level 0% 10% 30% 50% 0% 50% 0% 10% 30% 50%

MAE 0.884 0.965 1.123 1.490 0.867 1.358 0.861 0.893 1.057 1.267

U (m/s) RMSE 1.367 1.460 1.742 2.073 1.344 1.875 1.337 1.374 1.544 1.766
PICP 0.073 0.107 0.187 0.205 0.063 0.179 0.060 0.074 0.148 0.166

PINAW (%) 0.827 1.283 2.642 3.479 0.687 2.734 0.641 0.837 1.798 2.384

MAE 0.683 0.690 0.710 0.761 0.68 0.748 0.679 0.681 0.702 0.735

v (m/s) RMSE 1.149 1.157 1.197 1.255 1.144 1.235 1.142 1.145 1.171 1.213
PICP 0.081 0.096 0.137 0.156 0.0768 0.139 0.075 0.081 0.114 0.130

PINAW (%) 0.5020 0.585 0.862 1.026 0.461 0.901 0.4490 0.488 0.693 0.831

MAE 0.552 0.554 0.558 0.565 0.552 0.563 0.552 0.552 0.556 0.561

W(m/s) RMSE 1.011 1.012 1.016 1.022 1.011 1.019 1.011 1.011 1.014 1.017
PICP 0.049 0.057 0.078 0.088 0.0475 0.078 0.047 0.050 0.066 0.073

PINAW (%) 0.286 0.316 0.401 0.451 0.275 0.414 0.271 0.286 0.351 0.392

third sampling strategy (49(3)). Overall, the NSR model demonstrated satisfactory performance while mapping the
instantaneous 40 m AGL wind field to its near-surface counterpart.

The estimations for the U component-as depicted in Figures 10a, 15a, and 18a- indicate that the model accurately
captures the structure of the fire-induced wind field, including the acceleration zone above the flaming front and the
downstream vortex zone. Similarly, the estimations of V' component -as depicted in Figure 10b, 16a, and 19a- show
that the model reproduces the turbulent structure of the fire-induced wind accurately. However, the W component is
highly oscillatory -as depicted in 10c, 17a, and 20a-, which leads to higher estimation errors specifically within the
downstream vortex region. As a general observation, the model underestimates extreme velocity values, particularly
near the flaming front, up to 24% for U and up to 60% for the W component. This, however, is not surprising as the
model is trained to estimate the average and large-scale behaviour of the flow rather than the oscillatory and vortical
structure of the wind field at small scales, which justifies this limitation.

4.2.2. Uncertainty quantification

This section examines the combined effect of data measurement uncertainty, including the spatial distribution of
sampling points and the measurement device errors, and epistemic uncertainty on model performance and estimation
reliability. As discussed in Section 4.1.3, multiple low-resolution versions were generated for each high-resolution
wind field at flying altitude, which were then used to reconstruct the high-altitude wind field and perform uncertainty
analysis. Subsequently, these reconstructed high-altitude wind fields are used in this section to generate multiple
estimations of the near-surface wind field, providing both mean values and uncertainty measures. Consequently, the
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uncertainty propagates throughout the entire modelling pipeline, as the uncertain estimations of the first model inform
the uncertainty in the second model, thereby allowing for an assessment of the total uncertainty of the developed
framework.

Table 10 presents the accuracy and uncertainty metrics of the NSR model across unseen combinations of the
swarm size and sampling strategies. The obtained results indicate that the model is generally robust to changes in
the swarm size. For example, reducing the number of UAVs from 49 to 9 led to a slight increase in the MAE,
corresponding to an approximate rise of 2.5% from 0.86 to 0.88 for the U. The RMSE metric also shows a similar
trend. However, the uncertainty metric, PINAW, grows from 0.6410 to 0.7960 as UAV numbers decrease, indicating
a slightly broader interval for predictions. However, the model indicates consistency in terms of accuracy metrics and
uncertainty measures for the ¥ and W components of velocity, regardless of the number of UAVs. As a result, it
can be concluded that the model maintains high accuracy across various UAV configurations with a slight increase in
uncertainty for reduced sizes of the swarm.

Table 11 presents the performance of the NSR model under different levels of input measurement noise. Similar to
the UAV distribution and swarm size, the uncertainty caused by measurement noise propagates throughout the entire
modelling pipeline and affects the NSR predictions. As expected, increased measurement noise leads to decreased
estimation accuracy and increased uncertainty, particularly for smaller swarm sizes. For example, increasing the
input noise to 50% leads to a rise in MAE from 0.884 to 1.49 for case 9(2), corresponding to 69% increase, which
demonstrates a clear sensitivity to input noise. As noise increases, RMSE values also rise significantly, indicating larger
discrepancies between predicted and true values. Both PICP and PINAW measures increase by increasing the input
noise, particularly for case 9(2), where PICP for U increases from 0.073 to 0.205 (~180%) and PINAW rises from
0.827 to 3.479 (~320%). Considering the effect of swarm size, it could be concluded that increasing the number of
UAVs, enhances the model robustness against input noise, as evidenced by the lower MAE, RMSE, PICP, and PINAW
values for U in case 49(3) compared to 25(3) and 9(2). Regarding the V' and W' components of velocity, it could be
highlighted that while uncertainty generally increases with noise -for example, PINAW values change from 0.502 to
1.026 for V" and from 0.286 to 0.316 for W in case 9(2)-, this increase is less dramatic compared to the U component.
This is, however, partly because, despite their broad range, a significant portion of the V' and especially W component
values are near or equal to zero. In such cases, the uncertainty has little impact on the estimations, resulting in lower
average uncertainty metrics. Even as the uncertainty increases in regions with non-zero values, the overall average
remains small.

Figure 11 presents the estimated U component of the near-surface wind field for case 49(3), u;, = 4 m/s,
H, = 0.2 mand S = 0%, under increased measurement noise levels. Additional examples are presented in Figure 15
and 18 U, Figure 13, 16, and 19 for V', and Figure 14, 17, and 20 for W component of velocity. It can generally be
observed that although the model produces a satisfactorily smoothed version of the wind field, the quality of predictions
declines as input noise increases. This is reflected as the widened prediction intervals (PIs), which correspond to the
higher levels of input noise. These observations underline the model’s sensitivity to input quality and reiterate the
importance of accurate measurements for reliable wind field estimation.

5. Model Generalisation and Limitations

This section briefly addresses the practical capabilities and current limitations of the proposed method. As noted,
the model was trained and tested on a square terrain with a constant slope, simulating a line fire ignited at the centre of
the upstream boundary. But how applicable is this method to a large-scale wildfire? We believe that this method could
be generalised by adopting a patching technique, where the desired area or firefront is divided into a series of square
patches and the wind field is estimated for each patch independently. Within each patch, the fire could be considered a
line fire, making the proposed framework feasible for use in larger wildfires.

However, the model in its current form has a series of limitations. First, the terrain is unlikely to remain constant
and uniform within a 200 x 200 m? area. Besides, the assumption of a symmetric line fire across all patches seems to
be unrealistic, as fire fronts can vary significantly in shape within each patch. Another important limitation is that the
model is trained with input wind directed along the field length, meaning that patches must be aligned parallel to the
ambient wind, which would be extremely difficult to achieve in actual fires and complex terrains. Finally, the model
assumes that all data is collected at a constant height, directly parallel to the terrain, which may be difficult to obtain
in actual fire conditions.
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(d) Measurement noise= 50%

Figure 11: Results of the near-surface U-component of wind velocity estimation for case 49(3), u;y =4 m/s, H, =02 m
and S = 0%, under different measurement noise levels, showing the high-resolution ground truth/target, the model’'s mean
prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with the
ground truth (CFD)

These drawbacks point to opportunities where further study can improve the system and make it more flexible for
use in real-world situations. The proposed technique has the potential to be useful for research projects as well as fire
management and suppression tactics with additional development.

6. Conclusions

This study proposes a novel framework based on a combination of real-time UAV-swarm-based measurements of
the fire-induced wind field with Deep learning techniques for downscaling wind observations from measurement height
to the near-surface level at the desired spatial resolution. A total of 150 three-dimensional simulations of the grassland
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fire propagation are performed using the Fire Dynamics Simulator (FDS) software with different wind speeds, terrain
slope, and vegetation type and heights to provide a synthetic dataset for training the DL models.

The wind field at two different heights of 40m AGL and 2m AGL are extracted from the model at different intervals
throughout the fire propagation and are used as input and target pairs to train an attention-based residual model. A
two-step framework is developed with the overall aim of mapping the sparsely sensed high altitude wind field at 40m
AGL into the near surface wind field at 2m AGL at different stages of the fire propagation.

The trained model is then evaluated against varying swarm sizes, spatial distribution of UAVs, and different ratios
of noise in the input values. Results indicate that the proposed framework is capable of providing fast and accurate
estimations of the three-dimensional velocity components of the near-surface wind. The trained model achieved the
overall MAE and RMSE values of 0.321 m/s and 0.644 m/s, respectively, for U €[-7.42, 31.46], 0.219 and 0.499 for
V €[-20.41,19.83]), and 0.147 and 0.430 for W €[-17,32,12.90] which indicates that the errors are not significant
compared to the range of the velocities variations. It is also indicated that the model is robust against input noise and
shows satisfactory performance against unseen and limited swarm sizes. Considering that the wind measurement using
UAVs could include significant levels of noise, the model is then tested against different ratios of input Gaussian noise
of up to 50%. The obtained results indicated that even though the output results become so noisy, the model is still
capable of estimating the average behaviour of the wind field even against high levels of input noise of up to 30%. This
confirms its potential in real-world UAV-based measurement systems, where noisy data is common, and emphasises
its capability for generalisation to unseen scenarios.

CRediT authorship contribution statement

Mohammad Tavakol Sadrabadi: Conceptualisation, Methodology, Software, Writing, Investigation, Visuali-
sation. Mauro Sebastian Innocente: Conceptualisation, Methodology, Software, Writing, Supervision, Resources,
Visualisation.

References

[1] J. T. Abatzoglou, A. P. Williams, Impact of anthropogenic climate change on wildfire across western us forests, Proceedings of the National
Academy of Sciences 113 (42) (2016) 11770-11775. doi:doi:10.1073/pnas.1607171113.
URL https://www.pnas.org/doi/abs/10.1073/pnas.1607171113

[2] N. J. Abram, B. J. Henley, A. Sen Gupta, T. J. R. Lippmann, H. Clarke, A. J. Dowdy, J. J. Sharples, R. H. Nolan, T. Zhang, M. J.
Wooster, J. B. Wurtzel, K. J. Meissner, A. J. Pitman, A. M. Ukkola, B. P. Murphy, N. J. Tapper, M. M. Boer, Connections of climate
change and variability to large and extreme forest fires in southeast australia, Communications Earth and Environment 2 (1) (2021) 8.
doi:10.1038/s43247-020-00065-8.
URL https://doi.org/10.1038/s43247-020-00065-8

[3] B. E. Potter, Atmospheric interactions with wildland fire behaviour — i. basic surface interactions, vertical profiles and synoptic structures,
International Journal of Wildland Fire 21 (7) (2012) 779-801. doi:https://doi.org/10.1071/WF11128.
URL https://wuw.publish.csiro.au/paper/WF11128

[4] B. E. Potter, Atmospheric interactions with wildland fire behaviour — 2. plume and vortex dynamics, International Journal of Wildland Fire
21 (7) (2012) 802-817. doi:https://doi.org/10.1071/WF11129.
URL https://www.publish.csiro.au/paper/WF11128

[5] H.T. Gisborne, Measuring forest-fire danger in northern idaho, Report (1928).

[6] N.Liu,J. Lei, W. Gao, H. Chen, X. Xie, Combustion dynamics of large-scale wildfires, Proceedings of the Combustion Institute 38 (1) (2021)
157-198. doi:https://doi.org/10.1016/j.proci.2020.11.0086.
URL https://www.sciencedirect.com/science/article/pii/S1540748920307057

[7]1 J.-L. Dupuy, R. R. Linn, V. Konovalov, F. Pimont, J. A. Vega, E. Jiménez, Exploring three-dimensional coupled fire—atmosphere interactions
downwind of wind-driven surface fires and their influence on backfires using the higrad-firetec model, International Journal of Wildland Fire
20 (6) (2011) 734-750. doi:https://doi.org/10.1071/WF10035.
URL https://www.publish.csiro.au/paper/WF10035

[8] J. Zhang, M. Katurji, P. Zawar-Reza, T. Strand, The role of helicity and fire—atmosphere turbulent energy transport in potential wildfire
behaviour, International Journal of Wildland Fire 32 (1) (2023) 29-42. doi:https://doi.org/10.1071/WF22101.
URL https://www.publish.csiro.au/paper/WF22101

[9]1 M. Tavakol Sadrabadi, M. S. Innocente, E. Gkanas, I. Papagiannis, Comparison of the effect of one-way and two-way fire-wind coupling on
the modelling of wildland fire propagation dynamics (2022). doi:D0I:10.14195/978-989-26-2298-9_18.

[10] B.J. Stocks, M. E. Alexander, R. A. Lanoville, Overview of the international crown fire modelling experiment (icfme), Canadian Journal of
Forest Research 34 (8) (2004) 1543-1547. doi:10.1139/x04-905.
URL https://cdnsciencepub.com/doi/abs/10.1139/x04-905
[11] M. Katurji, B. Noonan, J. Zhang, A. Valencia, B. Schumacher, J. Kerr, T. Strand, G. Pearce, P. Zawar-Reza, Atmospheric turbulent structures

and fire sweeps during shrub fires and implications for flaming zone behaviour, International Journal of Wildland Fire 32 (1) (2023) 43-55.

23 of 32


https://www.pnas.org/doi/abs/10.1073/pnas.1607171113
https://doi.org/doi:10.1073/pnas.1607171113
https://www.pnas.org/doi/abs/10.1073/pnas.1607171113
https://doi.org/10.1038/s43247-020-00065-8
https://doi.org/10.1038/s43247-020-00065-8
https://doi.org/10.1038/s43247-020-00065-8
https://doi.org/10.1038/s43247-020-00065-8
https://www.publish.csiro.au/paper/WF11128
https://doi.org/https://doi.org/10.1071/WF11128
https://www.publish.csiro.au/paper/WF11128
https://www.publish.csiro.au/paper/WF11128
https://doi.org/https://doi.org/10.1071/WF11129
https://www.publish.csiro.au/paper/WF11128
https://www.sciencedirect.com/science/article/pii/S1540748920307057
https://doi.org/https://doi.org/10.1016/j.proci.2020.11.006
https://www.sciencedirect.com/science/article/pii/S1540748920307057
https://www.publish.csiro.au/paper/WF10035
https://www.publish.csiro.au/paper/WF10035
https://doi.org/https://doi.org/10.1071/WF10035
https://www.publish.csiro.au/paper/WF10035
https://www.publish.csiro.au/paper/WF22101
https://www.publish.csiro.au/paper/WF22101
https://doi.org/https://doi.org/10.1071/WF22101
https://www.publish.csiro.au/paper/WF22101
https://doi.org/DOI: 10.14195/978-989-26-2298-9_18
https://cdnsciencepub.com/doi/abs/10.1139/x04-905
https://doi.org/10.1139/x04-905
https://cdnsciencepub.com/doi/abs/10.1139/x04-905
https://www.publish.csiro.au/paper/WF22100
https://www.publish.csiro.au/paper/WF22100

REFERENCES REFERENCES

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
(20]

(21]

(22]

[23]

(24]

(25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

doi:https://doi.org/10.1071/WF22100.

URL https://wuw.publish.csiro.au/paper/WF22100

A. Desai, S. Goodrick, T. Banerjee, Investigating the turbulent dynamics of small-scale surface fires, Scientific Reports 12 (1) (2022) 10503.
doi:10.1038/s41598-022-13226-w.

URL https://doi.org/10.1038/s415698-022-13226-w

J. Innocent, D. Sutherland, N. Khan, K. Moinuddin, Physics-based simulations of grassfire propagation on sloped terrain at field scale:
motivations, model reliability, rate of spread and fire intensity, International Journal of Wildland Fire (2023) —doi:https://doi.org/
10.1071/WF21124.

URL https://www.publish.csiro.au/paper/WF21124

A. M. G. Lopes, L. M. Ribeiro, D. X. Viegas, J. R. Raposo, Simulation of forest fire spread using a two-way coupling algorithm and its
application to a real wildfire, Journal of Wind Engineering and Industrial Aerodynamics 193 (2019) 103967. doi:https://doi.org/10.

1016/j.jweia.2019.103967.

URL https://www.sciencedirect.com/science/article/pii/S0167610519305653

M. Vanella, K. McGrattan, R. McDermott, G. Forney, W. Mell, E. Gissi, P. Fiorucci, A multi-fidelity framework for wildland fire behavior
simulations over complex terrain, Atmosphere 12 (2) (2021) 273.

URL https://www.mdpi.com/2073-4433/12/2/273

A. Bakhshaii, E. Johnson, A review of a new generation of wildfire—atmosphere modeling, Canadian Journal of Forest Research 49 (6) (2019)
565-574. doi:https://doi.org/10.1139/cjfr-2018-0138.

R. Linn, J. Reisner, J. J. Colman, J. Winterkamp, Studying wildfire behavior using firetec, International Journal of Wildland Fire 11 (4) (2002)
233-246. doi:https://doi.org/10.1071/WF02007.

URL https://www.publish.csiro.au/paper/WF02007

W. E. Mell, M. A. Jenkins, J. S. Gould, P. B. Cheney, A physics-based approach to modelling grassland fires, International Journal of Wildland
Fire 16 (2007) 1-22. doi:https://doi.org/10.1071/WF06002.

M. A. Finney, Farsite: Fire area simulator-model development and evaluation (1998). doi:https://doi.org/10.2737/RMRS-RP-4.

P. L. Andrews, Current status and future needs of the behaveplus fire modeling system., International Journal of Wildland Fire. 23 (2014)
21-33. doi:https://doi.org/10.1071/WF12167.

P. Grasso, M. Innocente, A two-dimensional reaction-advection-diffusion model of the spread of fire in wildlands., in: Advances in Forest Fire
Research, pp. 334-342. doi:https://doi.org/10.14195/978-989-26-16-506_36.

P. Grasso, M. S. Innocente, Physics-based model of wildfire propagation towards faster-than-real-time simulations, Computers & Mathematics
with Applications 80 (5) (2020) 790-808. doi:https://doi.org/10.1016/j.camwa.2020.05.009.

URL https://www.sciencedirect.com/science/article/pii/S0898122120302078

T. Srivas, T. Artés, R. A. de Callafon, I. Altintas, Wildfire spread prediction and assimilation for farsite using ensemble kalman filtering1,
Procedia Computer Science 80 (2016) 897-908. doi:https://doi.org/10.1016/j.procs.2016.05.328.

URL https://www.sciencedirect.com/science/article/pii/S187705091630727X

N. S. Wagenbrenner, J. M. Forthofer, B. K. Lamb, K. S. Shannon, B. W. Butler, Downscaling surface wind predictions from numerical
weather prediction models in complex terrain with windninja, Atmospheric Chemistry and Physics 16 (8) (2016) 5229-5241, aCP. doi:

10.5194/acp-16-5229-2016.

URL https://acp.copernicus.org/articles/16/5229/2016/

K. Hohlein, M. Kern, T. Hewson, R. Westermann, A comparative study of convolutional neural network models for wind field downscaling,
Journal of Meteorological Applications 27 (6) (2020) e1961. doi:https://doi.org/10.1002/met.1961.

URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/met.1961

J. M. Forthofer, B. W. Butler, N. S. Wagenbrenner, A comparison of three approaches for simulating fine-scale surface winds in support of
wildland fire management. part i. model formulation and comparison against measurements, International Journal of Wildland Fire 23 (7)
(2014) 969-981. doi:https://doi.org/10.1071/WF12089.

URL https://www.publish.csiro.au/paper/WF12089

J. M. Forthofer, B. W. Butler, N. S. Wagenbrenner, A comparison of three approaches for simulating fine-scale surface winds in support of
wildland fire management. part i.an exploratory study of the effect of simulated winds on fire growth simulations, International Journal of
Wildland Fire 23 (7) (2014) 969-981. doi:https://doi.org/10.1071/WF12090.

URL https://wuw.publish.csiro.au/paper/WF12090

J. Forthofer, K. Shannon, B. Butler, simulating diurnally driven slope winds with windninja, Report (2009).

J. Hilton, N. Garg, Rapid wind—terrain correction for wildfire simulations, International Journal of Wildland Fire 30 (6) (2021) 410-427.
doi:https://doi.org/10.1071/WF20062.

URL https://wuw.publish.csiro.au/paper/WF20062

D. A. Sachindra, F. Huang, A. Barton, B. J. C. Perera, Statistical downscaling of general circulation model outputs to precipitation—part 2:
bias-correction and future projections, International Journal of Climatology 34 (11) (2014) 3282-3303. doi:https://doi.org/10.1002/
joc.3915.

URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3915

J. Zhang, X. Zhao, Spatiotemporal wind field prediction based on physics-informed deep learning and lidar measurements, Applied Energy
288 (2021) 116641. doi:https://doi.org/10.1016/j.apenergy.2021.116641.

URL https://www.sciencedirect.com/science/article/pii/S0306261921001732

J. Dujardin, M. Lehning, Wind-topo: Downscaling near-surface wind fields to high-resolution topography in highly complex terrain with deep
learning 148 (744) (2022) 1368-1388. doi:https://doi.org/10.1002/qj.4265.

URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4265

24 of 32


https://doi.org/https://doi.org/10.1071/WF22100
https://www.publish.csiro.au/paper/WF22100
https://doi.org/10.1038/s41598-022-13226-w
https://doi.org/10.1038/s41598-022-13226-w
https://doi.org/10.1038/s41598-022-13226-w
https://www.publish.csiro.au/paper/WF21124
https://www.publish.csiro.au/paper/WF21124
https://doi.org/https://doi.org/10.1071/WF21124
https://doi.org/https://doi.org/10.1071/WF21124
https://www.publish.csiro.au/paper/WF21124
https://www.sciencedirect.com/science/article/pii/S0167610519305653
https://www.sciencedirect.com/science/article/pii/S0167610519305653
https://doi.org/https://doi.org/10.1016/j.jweia.2019.103967
https://doi.org/https://doi.org/10.1016/j.jweia.2019.103967
https://www.sciencedirect.com/science/article/pii/S0167610519305653
https://www.mdpi.com/2073-4433/12/2/273
https://www.mdpi.com/2073-4433/12/2/273
https://www.mdpi.com/2073-4433/12/2/273
https://doi.org/https://doi.org/10.1139/cjfr-2018-0138
https://www.publish.csiro.au/paper/WF02007
https://doi.org/https://doi.org/10.1071/WF02007
https://www.publish.csiro.au/paper/WF02007
https://doi.org/https://doi.org/10.1071/WF06002
https://doi.org/https://doi.org/10.2737/RMRS-RP-4
https://doi.org/https://doi.org/10.1071/WF12167
https://doi.org/https://doi.org/10.14195/978-989-26-16-506_36
https://www.sciencedirect.com/science/article/pii/S0898122120302078
https://doi.org/https://doi.org/10.1016/j.camwa.2020.05.009
https://www.sciencedirect.com/science/article/pii/S0898122120302078
https://www.sciencedirect.com/science/article/pii/S187705091630727X
https://doi.org/https://doi.org/10.1016/j.procs.2016.05.328
https://www.sciencedirect.com/science/article/pii/S187705091630727X
https://acp.copernicus.org/articles/16/5229/2016/
https://acp.copernicus.org/articles/16/5229/2016/
https://doi.org/10.5194/acp-16-5229-2016
https://doi.org/10.5194/acp-16-5229-2016
https://acp.copernicus.org/articles/16/5229/2016/
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/met.1961
https://doi.org/https://doi.org/10.1002/met.1961
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/met.1961
https://www.publish.csiro.au/paper/WF12089
https://www.publish.csiro.au/paper/WF12089
https://doi.org/https://doi.org/10.1071/WF12089
https://www.publish.csiro.au/paper/WF12089
https://www.publish.csiro.au/paper/WF12090
https://www.publish.csiro.au/paper/WF12090
https://doi.org/https://doi.org/10.1071/WF12090
https://www.publish.csiro.au/paper/WF12090
https://www.publish.csiro.au/paper/WF20062
https://doi.org/https://doi.org/10.1071/WF20062
https://www.publish.csiro.au/paper/WF20062
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3915
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3915
https://doi.org/https://doi.org/10.1002/joc.3915
https://doi.org/https://doi.org/10.1002/joc.3915
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3915
https://www.sciencedirect.com/science/article/pii/S0306261921001732
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.116641
https://www.sciencedirect.com/science/article/pii/S0306261921001732
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4265
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4265
https://doi.org/https://doi.org/10.1002/qj.4265
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4265

REFERENCES REFERENCES

[33]

(34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

K. Stengel, A. Glaws, D. Hettinger, R. N. King, Adversarial super-resolution of climatological wind and solar data, Proceedings of the National
Academy of Sciences 117 (29) (2020) 16805. doi:10.1073/pnas.1918964117.

URL http://www.pnas.org/content/117/29/16805.abstract

J. Cheng, J. Liu, Z. Xu, C. Shen, Q. Kuang, Generating high-resolution climate prediction through generative adversarial network, Procedia
Computer Science 174 (2020) 123-127. doi:https://doi.org/10.1016/j.procs.2020.06.067.

URL https://wuw.sciencedirect.com/science/article/pii/S1877050920315817

K. Fukami, K. Fukagata, K. Taira, Super-resolution analysis via machine learning: a survey for fluid flows, Theoretical and Computational
Fluid Dynamics 37 (4) (2023) 421-444. doi:10.1007/s00162-023-00663-0.

URL https://doi.org/10.1007/s00162-023-00663-0

K. Fukami, K. Fukagata, K. Taira, Super-resolution reconstruction of turbulent flows with machine learning, Journal of Fluid Mechanics 870
(2019) 106-120. doi:10.1017/jfm.2019.238.

J. Zhang, J. Liu, Z. Huang, Improved deep learning method for accurate flow field reconstruction from sparse data, Ocean Engineering 280
(2023) 114902. doi:https://doi.org/10.1016/j.0oceaneng.2023.114902.

URL https://www.sciencedirect.com/science/article/pii/S0029801823012866

P. Dubois, T. Gomez, L. Planckaert, L. Perret, Machine learning for fluid flow reconstruction from limited measurements, Journal of
Computational Physics 448 (2022) 110733. doi:https://doi.org/10.1016/j.jcp.2021.110733.

URL https://www.sciencedirect.com/science/article/pii/S0021999121006288

L. Wang, M. Chen, Z. Luo, B. Zhang, J. Xu, Z. Wang, A. C. Tan, Dynamic wake field reconstruction of wind turbine through physics-informed
neural network and sparse lidar data, Energy 291 (2024) 130401. doi:https://doi.org/10.1016/j.energy.2024.130401.

URL https://www.sciencedirect.com/science/article/pii/S0360544224001725

M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya,
V. Makarenkov, S. Nahavandi, A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Information
Fusion 76 (2021) 243-297. doi:https://doi.org/10.1016/j.inffus.2021.05.008.

URL https://www.sciencedirect.com/science/article/pii/S1566253521001081

A. M. Collins, P. Rivera-Casillas, S. Dutta, O. M. Cecil, A. C. Trautz, M. W. Farthing, Super-resolution and uncertainty estimation from sparse
sensors of dynamical physical systems, Frontiers in Water 5 (2023). doi:10.3389/frwa.2023.1137110.

URL https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1137110

Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning (2016). arXiv:1506.02142.
URL https://arxiv.org/abs/1506.02142

M. Teye, H. Azizpour, K. Smith, Bayesian uncertainty estimation for batch normalized deep networks (2018). arXiv:1802.06455.

URL https://arxiv.org/abs/1802.06455

M. S. Innocente, P. Grasso, Self-organising swarms of firefighting drones: Harnessing the power of collective intelligence in decentralised
multi-robot systems, Journal of Computational Science 34 (2019) 80-101. doi:https://doi.org/10.1016/j.jocs.2019.04.009.
URL https://www.sciencedirect.com/science/article/pii/S1877750318310238

M. A. Akhloufi, A. Couturier, N. A. Castro, Unmanned aerial vehicles for wildland fires: Sensing, perception, cooperation and assistance,
drones 5 (1) (2021) 15. doi:https://doi.org/10.3390/drones5010015.

URL https://www.mdpi.com/2504-446X/5/1/15

W. Thielicke, W. Hiibert, U. Miiller, M. Eggert, P. Wilhelm, Towards accurate and practical drone-based wind measurements with an
ultrasonic anemometer, Atmospheric Measurement Techniques 14 (2) (2021) 1303-1318, aMT. doi:https://doi.org/10.5194/
amt-14-1303-2021.

URL https://amt.copernicus.org/articles/14/1303/2021/

N. Vasiljevi¢, M. Harris, A. Tegtmeier Pedersen, G. Rolighed Thorsen, M. Pitter, J. Harris, K. Bajpai, M. Courtney, Wind sensing with
drone-mounted wind lidars: proof of concept, Atmospheric Measurement Techniques 13 (2) (2020) 521-536, aMT. doi:https://doi.
org/10.5194/amt-13-521-2020.

URL https://amt.copernicus.org/articles/13/521/2020/

K. Sasaki, M. Inoue, T. Shimura, M. Iguchi, In situ, rotor-based drone measurement of wind vector and aerosol concentration in volcanic areas,
Atmosphere 12 (3) (2021) 376. doi:https://doi.org/10.3390/atmos12030376.

URL https://www.mdpi.com/2073-4433/12/3/376

T. Wetz, N. Wildmann, F. Beyrich, Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmo-
spheric boundary layer, Atmospheric Measurement Techniques 14 (5) (2021) 3795-3814, aMT. doi:https://doi.org/10.5194/
amt-14-3795-2021.

URL https://amt.copernicus.org/articles/14/3795/2021/

S. Prudden, A. Fisher, M. Marino, A. Mohamed, S. Watkins, G. Wild, Measuring wind with small unmanned aircraft systems, Journal of Wind
Engineering and Industrial Aerodynamics 176 (2018) 197-210. doi:https://doi.org/10.1016/j.jweia.2018.03.029.

URL https://www.sciencedirect.com/science/article/pii/S016761051730942X

M. Tavakol Sadrabadi, M. S. Innocente, Enhancing wildfire propagation model predictions using aerial swarm-based real-time wind
measurements: A conceptual framework, Applied Mathematical Modelling 130 (2024) 615-634. doi:https://doi.org/10.1016/j.
apm.2024.03.012.

URL https://www.sciencedirect.com/science/article/pii/S0307904X24001227

G. W. Donnell, J. A. Feight, N. Lannan, J. D. Jacob, Wind characterization using onboard IMU of sUAS, 2018 Atmospheric Flight Mechanics
Conference (2018). doi:https://doi.org/10.2514/6.2018-2986.

A. Rautenberg, M. S. Graf, N. Wildmann, A. Platis, J. Bange, Reviewing wind measurement approaches for fixed-wing unmanned aircraft,
Atmosphere 9 (11) (2018) 422.

25 of 32


http://www.pnas.org/content/117/29/16805.abstract
https://doi.org/10.1073/pnas.1918964117
http://www.pnas.org/content/117/29/16805.abstract
https://www.sciencedirect.com/science/article/pii/S1877050920315817
https://doi.org/https://doi.org/10.1016/j.procs.2020.06.067
https://www.sciencedirect.com/science/article/pii/S1877050920315817
https://doi.org/10.1007/s00162-023-00663-0
https://doi.org/10.1007/s00162-023-00663-0
https://doi.org/10.1007/s00162-023-00663-0
https://doi.org/10.1017/jfm.2019.238
https://www.sciencedirect.com/science/article/pii/S0029801823012866
https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114902
https://www.sciencedirect.com/science/article/pii/S0029801823012866
https://www.sciencedirect.com/science/article/pii/S0021999121006288
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110733
https://www.sciencedirect.com/science/article/pii/S0021999121006288
https://www.sciencedirect.com/science/article/pii/S0360544224001725
https://www.sciencedirect.com/science/article/pii/S0360544224001725
https://doi.org/https://doi.org/10.1016/j.energy.2024.130401
https://www.sciencedirect.com/science/article/pii/S0360544224001725
https://www.sciencedirect.com/science/article/pii/S1566253521001081
https://doi.org/https://doi.org/10.1016/j.inffus.2021.05.008
https://www.sciencedirect.com/science/article/pii/S1566253521001081
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1137110
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1137110
https://doi.org/10.3389/frwa.2023.1137110
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1137110
https://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1802.06455
http://arxiv.org/abs/1802.06455
https://arxiv.org/abs/1802.06455
https://www.sciencedirect.com/science/article/pii/S1877750318310238
https://www.sciencedirect.com/science/article/pii/S1877750318310238
https://doi.org/https://doi.org/10.1016/j.jocs.2019.04.009
https://www.sciencedirect.com/science/article/pii/S1877750318310238
https://www.mdpi.com/2504-446X/5/1/15
https://doi.org/https://doi.org/10.3390/drones5010015
https://www.mdpi.com/2504-446X/5/1/15
https://amt.copernicus.org/articles/14/1303/2021/
https://amt.copernicus.org/articles/14/1303/2021/
https://doi.org/https://doi.org/10.5194/amt-14-1303-2021
https://doi.org/https://doi.org/10.5194/amt-14-1303-2021
https://amt.copernicus.org/articles/14/1303/2021/
https://amt.copernicus.org/articles/13/521/2020/
https://amt.copernicus.org/articles/13/521/2020/
https://doi.org/https://doi.org/10.5194/amt-13-521-2020
https://doi.org/https://doi.org/10.5194/amt-13-521-2020
https://amt.copernicus.org/articles/13/521/2020/
https://www.mdpi.com/2073-4433/12/3/376
https://doi.org/https://doi.org/10.3390/atmos12030376
https://www.mdpi.com/2073-4433/12/3/376
https://amt.copernicus.org/articles/14/3795/2021/
https://amt.copernicus.org/articles/14/3795/2021/
https://doi.org/https://doi.org/10.5194/amt-14-3795-2021
https://doi.org/https://doi.org/10.5194/amt-14-3795-2021
https://amt.copernicus.org/articles/14/3795/2021/
https://www.sciencedirect.com/science/article/pii/S016761051730942X
https://doi.org/https://doi.org/10.1016/j.jweia.2018.03.029
https://www.sciencedirect.com/science/article/pii/S016761051730942X
https://www.sciencedirect.com/science/article/pii/S0307904X24001227
https://www.sciencedirect.com/science/article/pii/S0307904X24001227
https://doi.org/https://doi.org/10.1016/j.apm.2024.03.012
https://doi.org/https://doi.org/10.1016/j.apm.2024.03.012
https://www.sciencedirect.com/science/article/pii/S0307904X24001227
https://doi.org/https://doi.org/10.2514/6.2018-2986
https://www.mdpi.com/2073-4433/9/11/422

REFERENCES REFERENCES

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

URL https://wuw.mdpi.com/2073-4433/9/11/422

K. McGrattan, S. Hostikka, J. Floyd, R. McDermott, M. Vanella, E. Mueller, Fire Dynamics Simulator User’s Guide, sixth Edition (2023).
URL https://github.com/firemodels/fds/releases/download/FDS-6.8.0/FDS_User_Guide.pdf

N. Cheney, J. Gould, W. Catchpole, The influence of fuel, weather and fire shape variables on fire-spread in grasslands, International Journal
of Wildland Fire 3 (1) (1993) 31-44. doi:https://doi.org/10.1071/WF9930031.

URL https://wuw.publish.csiro.au/paper/WF9930031

C. R. Boardman, M. A. Dietenberger, D. R. Weise, Specific heat capacity of wildland foliar fuels to 434 °c, Fuel 292 (2021) 120396.
doi:https://doi.org/10.1016/j.fuel.2021.120396.

URL https://www.sciencedirect.com/science/article/pii/S0016236121002726

A. K. B. Porterie, J. L. Consalvi, J. C. Loraud, Predicting wildland fire behavior and emissions using a fine-scale physical model, Numerical
Heat Transfer, Part A: Applications 47 (6) (2005) 571-591. arXiv:https://doi.org/10.1080/10407780590891362, doi:10.1080/
10407780590891362.

URL https://doi.org/10.1080/10407780590891362

A. Grishin, Mathematical Modeling of Forest Fires and New Methods of Fighting Them, Publishing House of the Tomsk State University,
1997.

URL https://books.google.co.uk/books?id=JGy- AAAACAAJ

E. Amini, M.-S. Safdari, N. Johnson, D. R. Weise, T. H. Fletcher, Pyrolysis kinetics of wildland vegetation using model-fitting methods,
Journal of Analytical and Applied Pyrolysis 157 (2021) 105167. doi:https://doi.org/10.1016/j.jaap.2021.105167.

URL https://www.sciencedirect.com/science/article/pii/S0165237021001534

N. Boonmee, J. Quintiere, Glowing ignition of wood: the onset of surface combustion, Proceedings of the Combustion Institute 30 (2) (2005)
2303-2310. doi:https://doi.org/10.1016/j .proci.2004.07.022.

URL https://www.sciencedirect.com/science/article/pii/S0082078404000268

N. Jarrin, J.-C. Uribe, R. Prosser, D. Laurence, Synthetic inflow boundary conditions for wall bounded flows, Vol. 97 of Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, Springer Nature, United States, 2008. doi:10.1007/978-3-540-77815-8_8.

J. Innocent, D. Sutherland, N. Khan, K. Moinuddin, Physics-based simulations of grassfire propagation on sloped terrain at field scale:
motivations, model reliability, rate of spread and fire intensity, International Journal of Wildland Fire 32 (2023) 496-512. doi:10.1071/
WF21124.

M. Tavakol Sadrabadi, M. S. Innocente, To cut or not to cut: Effect of vegetation height and bulk density on wildfire propagation under varied
wind and slope conditions, International Journal of Disaster Risk Reduction 121 (2025) 105372. doi:https://doi.org/10.1016/j.
ijdrr.2025.105372.

URL https://www.sciencedirect.com/science/article/pii/S$2212420925001967

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778. doi:10.1109/CVPR.2016.90.

S. Woo, J. Park, J.-Y. Lee, 1. S. Kweon, Cbam: Convolutional block attention module, Computer Vision — ECCV 2018, Springer International
Publishing, pp. 3-19. doi:10.1007/978-3-030-01234-2_1.

S. Liu, Y. Luo, L. Peng, Y. Jiang, E. Meng, B. Li, Wind pressure field reconstruction based on unbiased conditional kernel density estimation,
Journal of Wind Engineering and Industrial Aerodynamics 223 (2022) 104947. doi:https://doi.org/10.1016/j.jweia.2022.
104947.

URL https://www.sciencedirect.com/science/article/pii/S0167610522000526

26 of 32


https://www.mdpi.com/2073-4433/9/11/422
https://github.com/firemodels/fds/releases/download/FDS-6.8.0/FDS_User_Guide.pdf
https://github.com/firemodels/fds/releases/download/FDS-6.8.0/FDS_User_Guide.pdf
https://www.publish.csiro.au/paper/WF9930031
https://doi.org/https://doi.org/10.1071/WF9930031
https://www.publish.csiro.au/paper/WF9930031
https://www.sciencedirect.com/science/article/pii/S0016236121002726
https://doi.org/https://doi.org/10.1016/j.fuel.2021.120396
https://www.sciencedirect.com/science/article/pii/S0016236121002726
https://doi.org/10.1080/10407780590891362
http://arxiv.org/abs/https://doi.org/10.1080/10407780590891362
https://doi.org/10.1080/10407780590891362
https://doi.org/10.1080/10407780590891362
https://doi.org/10.1080/10407780590891362
https://books.google.co.uk/books?id=JGy-AAAACAAJ
https://books.google.co.uk/books?id=JGy-AAAACAAJ
https://www.sciencedirect.com/science/article/pii/S0165237021001534
https://doi.org/https://doi.org/10.1016/j.jaap.2021.105167
https://www.sciencedirect.com/science/article/pii/S0165237021001534
https://www.sciencedirect.com/science/article/pii/S0082078404000268
https://doi.org/https://doi.org/10.1016/j.proci.2004.07.022
https://www.sciencedirect.com/science/article/pii/S0082078404000268
https://doi.org/10.1007/978-3-540-77815-8_8
https://doi.org/10.1071/WF21124
https://doi.org/10.1071/WF21124
https://www.sciencedirect.com/science/article/pii/S2212420925001967
https://www.sciencedirect.com/science/article/pii/S2212420925001967
https://doi.org/https://doi.org/10.1016/j.ijdrr.2025.105372
https://doi.org/https://doi.org/10.1016/j.ijdrr.2025.105372
https://www.sciencedirect.com/science/article/pii/S2212420925001967
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-030-01234-2_1
https://www.sciencedirect.com/science/article/pii/S0167610522000526
https://doi.org/https://doi.org/10.1016/j.jweia.2022.104947
https://doi.org/https://doi.org/10.1016/j.jweia.2022.104947
https://www.sciencedirect.com/science/article/pii/S0167610522000526

A EXTRA FIGURES

Appendix A. Extra Figures

27 of 32



A EXTRA FIGURES

Field Width (m)

Field Width (m)

Field Width (m)

Field Width (m)

200

200

200

200

High-Res Target

0

50 100 150
Field Length(m)

High-Res Target

200

50 100 150
Field Length(m)

High-Res larget

200

0

50 100 150
Field Length(m)

High-Res Target

50 100 150
Field Length(m)

e e e i —— |

T(%)

T ()

T(%)

T ()

Field Width (m)

Field Width (m)

Field Width (m)

Field Width (m)

200

200

200

Mean Prediction

(a) Measurement noise= 0%

J
0 50 100 150 200
Field Length(m)
Mean Prediction

e
:

0 50 100 150 200
Field Length(m)

80

Field Width (m)

Field Width (m)

200

3

3
8

3

200

3

3
8

K

50 100 150
Field Length(m)

Error

150
Field Length(m)

(b) Measurement noise= 10%

Mean Prediction

N

0 50 100 150 200
Field Length(m)

(c) Measurement noise= 30%

Mean Prediction
——

0 50 100 150 200
Field Length(m)

80

Field Width (m)

Field Width (m)

200

3

3
8

3

200

3

3
8

g

Error

50 100 150
Field Length(m)

50 100 150
Field Length(m)

(d) Measurement noise= 50%

Figure 12: 49 (3) -T against different noise levels
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Figure 13: Results of the near-surface V-component of wind velocity estimation for case 49(3), u;, =4 m/s, H, =02 m
and S = 0%, under different measurement noise levels, showing the high-resolution ground truth/target, the model's mean
prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with the

ground truth (CFD)
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Figure 14: Results of the near-surface W-component of wind velocity estimation for case 49(3), u;y, =4 m/s, H,
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prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with the
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Figure 15: Results of the near-surface U-component of wind velocity estimation for case 49(3), u;, = 12 m/s, H, = 0.5 m
and S = +20%, under different measurement noise levels, showing the high-resolution ground truth/target, the model's
mean prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with
the ground truth (CFD)
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Figure 16: Results of the near-surface V-component of wind velocity estimation for case 49(3), u;, = 12 m/s, H, = 0.5 m
and S = +20%, under different measurement noise levels, showing the high-resolution ground truth/target, the model’s
mean prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with

the ground truth (CFD)
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Figure 17: Results of the near-surface W-component of wind velocity estimation for case 49(3), 1)y = 12 m/s, H, =0.5 m
and S = +20%, under different measurement noise levels, showing the high-resolution ground truth/target, the model's
mean prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with
the ground truth (CFD)
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Figure 18: Results of the near-surface U-component of wind velocity estimation for case 49(3), u;, = 12 m/s, H, = 1 m
and S = —20%, under different measurement noise levels, showing the high-resolution ground truth/target, the model’s
mean prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with
the ground truth (CFD)
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Figure 19: Results of the near-surface V-component of wind velocity estimation for case 49(3), u;, = 12 m/s, H, = 1 m
and S = —20%, under different measurement noise levels, showing the high-resolution ground truth/target, the model’s
mean prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with
the ground truth (CFD)
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Figure 20: Results of the near-surface W-component of wind velocity estimation for case 49(3), u;y =12 m/s, H, =1 m
and S = —20%, under different measurement noise levels, showing the high-resolution ground truth/target, the model’s
mean prediction, the reconstruction error, and a comparison of the estimated value along the centerline of the field with
the ground truth (CFD)
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