Under Review | In Preparation
- M. Tavakol Sadrabadi, & M.S. Innocente (2025). Stochastic near-surface wind field estimation from sparse aerial swarm measurements over wildland fires. Under Review in Applied Soft Computing, Elsevier.
DOI: TBC - J.J. Tai, J.K. Terry, M.S. Innocente, J. Brusey, & N. Horri (2022). Some Supervision Required: Incorporating Oracle Policies in Reinforcement Learning via Epistemic Uncertainty Metrics. Upcoming submission to Artificial Intelligence, Elsevier.
DOI: 10.48550/arXiv.2208.10533 - J.J. Tai, J. Wong, M.S. Innocente, N. Horri, J. Brusey, & S.K. Phang (2023). PyFlyt—UAV Simulation Environments for Reinforcement Learning Research. Upcoming submission to Journal of Field Robotics, Wiley.
DOI: 10.48550/arXiv.2304.01305.
Published
- M. Tavakol Sadrabadi, J. Peiró, M.S. Innocente, & G. Rein (2025). Conceptual design of a wildfire emergency response system empowered by swarms of unmanned aerial vehicles. International Journal of Disaster Risk Reduction, 124, 105493, Elsevier.
DOI: 10.1016/j.ijdrr.2025.105493. - M. Tavakol Sadrabadi, & M.S. Innocente (2025). To cut or not to cut: Effect of vegetation height and bulk density on wildfire propagation under varying wind and slope conditions. International Journal of Disaster Risk Reduction, 121, 105372, Elsevier.
DOI: 10.1016/j.ijdrr.2025.105372. - I. Papagiannis, M.S. Innocente, J.D. Davies, J.L. Ryan, & E.I. Gkanas (2024). Investigating the impact of Iron Oxide Nanoparticles on the stability of Class A foam for wildfire suppression. Fire Safety Journal, 150, Part A, Elsevier.
DOI: 10.1016/j.firesaf.2024.104282. - M. Tavakol Sadrabadi, & M.S. Innocente (2024). Enhancing Wildfire Propagation Model Predictions Using Aerial Swarm-Based Real-Time Wind Measurements: A Conceptual Framework. Applied Mathematical Modelling, 130, 615–634, Elsevier.
DOI: 10.1016/j.apm.2024.03.012. - M. Tavakol Sadrabadi, M.S. Innocente (2023). Vegetation Cover Type Classification Using Cartographic Data for Prediction of Wildfire Behaviour. Fire, 6, no. 2: 76, MDPI.
DOI: 10.3390/fire6020076. - Z. Zyadat, N. Horri, M.S. Innocente, T. Statheros (2023). Observer-Based Optimal Control of a Quadplane with Active Wind Disturbance and Actuator Fault Rejection. Sensors, 23, no. 4: 1954, MDPI.
DOI: 10.3390/s23041954. - P. Grasso, M.S. Innocente, J.J. Tai, O. Haas, & A.M. Dizqah (2022). Analysis and Accuracy Improvement of UWB-TDoA-Based Indoor Positioning System. Sensors, 22, no. 23: 9136, MDPI.
DOI: 10.3390/s22239136. - D. Rajput, J.M. Herreros, M.S. Innocente, J. Bryans, J. Schaub, & A.M. Dizqah (2022). Impact of the Number of Planetary Gears on the Energy Efficiency of Electrified Powertrains. Applied Energy, 323, 119531, Elsevier.
DOI: 10.1016/j.apenergy.2022.119531. - D. Rajput, J.M. Herreros, M.S. Innocente, J. Schaub, & A.M. Dizqah (2021). Electrified Powertrain with Multiple Planetary Gears and Corresponding Energy Management Strategy. Vehicles, 3, 341–356, MDPI.
DOI: 10.3390/vehicles3030021 - P. Grasso, & M.S. Innocente (2020). Physics-based model of wildfire propagation towards faster-than-real-time simulations. Computers and Mathematics with Applications, 80, 790–808, Elsevier.
DOI: 10.1016/j.camwa.2020.05.009 - A.M. Dizqah, B.L. Ballard, M.V. Blundell, S. Kanarachos, & M.S. Innocente (2020). A Non-Convex Control Allocation Strategy as Energy-Efficient Torque Distributors for On-Road and Off-Road Vehicles. Control Engineering Practice, 95, Elsevier.
DOI: 10.1016/j.conengprac.2019.104256 - M.S. Innocente, & P. Grasso (2019). Self-organising swarms of firefighting drones: Harnessing the power of collective intelligence in decentralised multi-robot systems. Journal of Computational Science, 34, 80–101, Elsevier.
DOI: 10.1016/j.jocs.2019.04.009. Repository here. - M.S. Innocente, S.M.B. Afonso, J. Sienz, & H.M. Davies (2015). Particle swarm algorithm with adaptive constraint handling and integrated surrogate model for the management of petroleum fields. Applied Soft Computing, 34, 463–484, Elsevier.
DOI: 10.1016/j.asoc.2015.05.032
